Title:

ELECTRO-REACTIVITY MEASURES OF
PSYCHIC STATE TRANSFER

Author:

William C. Nelson, D.Sc.; Maitreya; Limerick, Ireland

Chief Editor:

Judith Nagy, M.D.; Independent Medical Editor; Budapest, Hungary

Edited and Validated By:

Istvan Bandics, M.D.; Budapest, Hungary
Gylila Panszki, M.D.; Budapest, Hungary
Illya Brenner, M.D.; Institute of Oncology, Kiev, Ukraine
Peter Smith, LCH; Cornwall, England
Dima Sakharov, Ph.D.; Kiev, Ukraine
Tony Hughes, D.A.c.; Dublin, Ireland
Peter Bartlett, D.O.; London, England

Consultant:

Dr. Simon Gutl, M.D.; Hanover, Germany

Developed By:

The staff of Maitreya;
PSYCHIC STATE TRANSFER

Abstract:

In this study we sought to ascertain whether we could measure electrophysiological reactivity in one person when his friend was subjected to an adverse physiological stimuli. For this test, we tested twenty couples who were either very good friends of the same sex or intimate friends of the opposite sex. One person was isolated, and over two hours this person was subjected at random intervals to a ten-second intense stroboscopic light. This would produce some low-grade pain and discomfort in the eyes, as well as a heightened catecholamine response.

During the same two hours the isolated person's partner was monitored by a sophisticated biofeedback device which measured multiple channels of information including skin resistance, brain wave, EMG, respiration rate and heart rate. The person hooked up to the electrophysiological equipment was also told of the situation and told to make conscious guesses as to when his friend was being subjected to the stroboscope.

We then looked for electrophysiological responses and calibrated the conscious verbal responses. The conscious guesses where shown to be approximately at chance, whereas the electrophysiological reactivity scores showed a high degree of correlation. The article proposes methods of communication to account for this phenomenon.

Introduction:

Physic phenomena have been accounted by every known culture and society that has existed. There seems to be some scientific evidence for the existence of a transfer through unknown mechanisms or media of feeling states from one person to
another. The closer people are, the more intense the possibility of transfer. Many throughout the ages have accounted for experiences of this kind, such as mothers who have intense experiences at the same time their children are subjected to risky or dangerous situations. Some of the research from Russia has shown that mother rabbits had distinct electrophysiological pattern changes in their bodies when one of their offspring was in a dangerous situation or was killed. This situation has been used to help submarines to communicate, in that electromagnetic radiation cannot be utilized beneath the surface of water. Thus some crude systems of communication have been developed using this electro-reactivity phenomenon.

In our study we used pairs of close friends. We subjected one of each pair to stroboscopic light, which produced some discomfort. Then we monitored the other person in each pair for electrophysiological activity, and we also asked them to make conscious estimates as to the timing of the stroboscopic light.

Subjects:

The subjects of this study were taken from the undergraduate population at Youngstown State University in 1979, under the supervision of the Psychology Department. Dr. Steve Graph, clinical psychologist, supplied equipment and Dr. Gil Attikson supervised the study.

Intimate close friends or intimate dating couples were chosen because of their high familiarity and their care and concern for each other. One person in each couple was placed into a isolated, dark room. At five random intervals over the course of an hour, an intense stroboscopic beam would appear for ten-seconds. This was done with a random generator that would turn on the device, unknown to the experimenters at the stroboscopic site or the recording site.

The other person in each couple was placed in the recording site, which was in a another building with a different electrical outlet system to prevent the transfer of any material or information through the electrical connectivity of the buildings. The "reaction" subject was then asked to make mental guesses as to when he thought his friend was being subjected to the stroboscopic light. A mathematical algorithm of reactivity was developed to measure the unconscious body reactions.

Equipment:

The equipment used was a Radio Shack stroboscopic light which was controlled by a random time generator to produce five, 10 second bursts of stroboscopic light. The stroboscopic light was placed 25 inches in front of the face of the transmitter subject who was placed into a comfortable chair in a dark room and told to simply meditate and contemplate their friend for one hour when the stroboscopic light would be turned off and on for five different times.

The receiver was hooked up to a brain wave machine donated by Youngstown State University and Dr. Stephen Graff. The polygraph machine measured respiration rate, temperature, skin resistance at three different places, and muscle tension. The brain wave machine was set to measure brain wave phenomena. At the recording site
researchers monitored the entire procedure of the one-hour test using graph paper. Graph paper was correlated for timing so that we would be able to calculate the exact time of the information. The receiver would also remark at any time when he consciously thought that his friend was in some type of trouble, or that there might be a stroboscopic event. The receiver subjects were told that the light would occur five times. People were not limited in the number of guesses. There was no reinforcement offered, as all the subjects in this test were volunteers.

Method:

As outlined before, the transmitter subject was placed in a room in a different building from the receiver subject. The transmitter subject was placed in a comfortable chair with the stroboscope light mounted twenty-five inches from his face. This random burst, five times in an hour, provoked a stroboscopic-intense signal to the eyes of the transmitter subject. The transmitter subject was told to sit and relax, and to have pleasant thoughts towards his companion in the other building.

The receiver subject in the other building was hooked up to the polygraph and brain wave device, and was told to make verbal guesses while his electrophysiological system was monitored during the hour of the test.

A mathematical algorithm was used to analyze the polygraph data. The reactivity pattern is an increase in EEG potential coupled with reactive spikes and pattern shifts. This was also found with GSR spikes of an over ten percent shift in decreasing resistance lasting for only one second. EMG changes included downward spikes in potential and a frequency change upward. Temperature changes included .5 to one degree upward change manifesting over the first minute. Thus the formula for reactivity is:

\[(\Delta \text{EEG Potential}) + (\Delta \text{Temperature Right}) + (\Delta \text{Temperature Left}) + (\Delta \text{GSR1}) + (\Delta \text{GRS2}) + (\Delta \text{GSR3}) + (\Delta \text{EMG}) = \text{Reactive Change}\]

Successful Guess = 10 seconds Before, During or After Stroboscope

<table>
<thead>
<tr>
<th>Couples</th>
<th>Verbal Guesses</th>
<th>Successful Guesses</th>
<th>Reactivity Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
There were 2,400 possible guesses, of which 100 were right. There is a 1/240 chance of success.

Results:

In our table we can see that of the verbal guesses there was approximately a chance interval of the verbal ability or the conscious ability of the receiver subject to know or intuit when the stroboscope was being experienced to his friend. However, with the electrophysiological test it was soon found that there was a distinct electrophysiological response that involved a change in the brain wave pattern, a change in skin resistance and a change in body temperature that was unknown to the receiver subject. This subtle change was then found through the mathematical analysis of the Fourier test. The accuracy of the verbal guesses was close to chance, but the accuracy of the electrophysiological reactivity test had a seventy-eight percent correlation. Thus the difference between the populations of the verbal versus electrophysiological scores showed a .05 t-score using the student t-test.

Discussion:
It appears that this phenomenon of transmission does not happen on a conscious level, but happens on an electrophysiological level. It does not seem to depend on time or space, but seems to operate on some other type of channel. One possible explanation is that of a subspace type communication which has been outlined in Quantum Biology [Books: 1].

This subspace type of communication (meaning the Nelson effect) is how one object can influence the indeterminacy of another. It was proven in the Bio-Quantum Matrix [Books: 2] that the synaptic cleft of the human brain is indeed a quantic phenomenon, and thus sensitive to indeterminacy. One indeterminate system, the receiver subject, could seemingly affect another indeterminate system, the transmitter subject, in our study through a process of electro-reactivity.

A recent report on physic phenomena on the Nova television program outlined how the human brain seems to have an influence over indeterminacy. In the study discussed by Nova, people were asked to influence the rate of atomic decay of uranium. This is an indeterminate event by the laws of quantum physics. Yet they were able to influence it to some degree.

In our study, three of the couples were given a small dose of narcan prior to the administration of the study. It was found that narcan is able to block both transmission and reception. Giving a little bit of narcan to either member of this study had a negative effect on the ability of the transfer. Narcan works by blocking the endorphin receptors of the brain. It is a precept in the Quantum Biology books by Dr. William Nelson [Books: 1-5] that somehow the endorphin receptors of the brain seem to act as some type of transmission channel for the Nelson effect. The Nelson effect is manifested in many different ways, but seems to have its highest functioning in higher mammals where endorphins are plentiful. If we block the endorphin receptors, we seemingly severely inhibit the transfer of this indeterminate effluence known as the Nelson Effect.

Our discussion must also include a discussion of electrophysiological reactivity, or the ability of modern science to measure the electrophysiological reactivity of a person. This is done by measuring skill resistance, brain waves, and other techniques where we are measuring a largely indeterminate procedure, where our measures border on indeterminacy. This indeterminacy, which is thought of as noise by most, actually contains information. In biology we must realize what we define as noise could be something we don't yet understand, and that this seeming noise actually may be an electrophysiological reaction that can be measured.

Thus our study seems to reinforce the principle of the Nelson Effect and the transmission of electro-reactivity through an unknown channel of indeterminacy effects.
ELECTRO-REACTIVITY MEASURES OF
PSYCHIC STATE TRANSFER

--- BIBLIOGRAPHY ---

BOOKS

ARTICLES AND STUDIES