Garlic Friend or Foe

Stinky

Dr. G

MAYBE I NEED TO BE...

SUPER FRIENDLY!

WHO DOESN'T LIKE GARLIC!
There is a big debate on the issue of garlic as to its possible adverse effects on the Brain. The benefits of Garlic as an anti-parasite, anti-biotic are very evident. **Allium sativum, Garlic** has been used for centuries for medicinal purposes and as a culinary herb. In the Talmud Book of Ezra, Jews are encouraged to partake of garlic at the Friday night Shabbat meal for the following five reasons: (1) to keep the body warm; (2) to brighten the face; (3) to kill intestinal parasites; (4) to increase the volume of semen; and **(5) to foster love and to do away with jealousy**. Garlic is mentioned more than twenty times in the ancient Egyptian medical papyrus called the Codex Ebers dating back to ca. 1550 B.C. Pliny the Elder sited more than sixty therapeutic uses for garlic including treating mental disorders. Dioscorides, chief physician for the Roman army prescribed garlic for intestinal parasitic disorders and emotional distress after battle. In the Middle Ages Garlic was found to destroy evil. It was used to ward off the evil eye, evil people, and evil thoughts. Vampires were afraid of it because it could ward off evil.

Garlic in moderate amounts is an excellent food and a good medicine, it will not cure brain cancer but it helps in many ways. **Italy has the lowest cancer level in Europe and the highest life expectancy**, Garlic’s medicinal abilities are legendary, but as Ben Franklin said "Moderation in ALL Things" When the French joined a Soviet space mission in late 1986, their menus caused an international stir. The French would not go into space without **garlic**, and

Garlic is mentioned in the Bible as good food at Numbers 11:5:

> We remember the fish which we ate freely in Egypt, the cucumbers, the melons, the leeks, the onions, and the garlic; *(but over use can cause headaches)* ---

The debate of how it can destroy brain cells and affect the mind is brewing. As it appears from this long and thorough review of the complete evidence to date on the subject of Garlic’s effect on brain cells is that Garlic appears to act like chemotherapy. It has some poisonous properties to BAD BRAIN cells. In other words it can destroy cancer cells and or pathological evil minded cells. Thus it can affect the brain.

Could Garlic be a way to treat evil???
Suppressed science: Garlic proven to kill brain cancer cells without side effects

Wednesday, March 19, 2014 by: Paul Fassa

(NaturalNews) First comes a guy curing his stage 4 prostate cancer with baking soda. Next a woman cures her cancer with carrot juice while some time ago a UK farmer cured his cancer with wheat grass juice. Now there's an obscure study proving garlic kills brain cancer cells without side effects.

There's no money in any of that - only healing. Darn! How's the cancer industry going to exploit cancer victims and create huge fund raising revenues if this type of news gets out?

A small group of researchers at Medical University of South Carolina discovered something that's useful for anyone willing to properly consume lots of garlic. They discovered that certain organo-sulfur compounds in garlic do kill brain cancer cells without disturbing healthy cells.

But they did this in 2007! It didn't get much mainstream press, if any. Did we miss something? Maybe Big Pharma is trying to figure out how to create those compounds synthetically to get a patent and pay the FDA for approval after offering dubious papers from sketchy trials.

Whether it's useful for the cancer industry remains to be seen. But the results of this study haven't received much if any attention from the mainstream press. Apparently, there wasn't even a ripple within the medical establishment.

Instead of using the study to further explore natural methods of nipping brain cancer in the bud, the cancer industry encourages beginning "proven medical treatments" as early as possible. Treatments like surgery, radiation and chemotherapy offer 15 months or fewer of practicing efficient drool cup use before dying. But these "treatments" are proven money makers.

About that obscure garlic brain cancer study

Three researchers teamed up in South Carolina for an in vitro analysis of what three natural garlic compounds can do to brain cancer cells, specifically glioblastoma, the fastest growing brain cancer tumor common to adults. Two types of glioblastoma cancer cells were cultured, and three sulfur compounds from garlic were administered into the culture.
The compounds were diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS). All three provided cytotoxic (cancer killing) effects, especially DATS, which "induced cell death via reactive oxygen species (ROS) production and a mitochondria-mediated pathway".

These compounds are able to get through the blood brain barrier to induce cancer cell apoptosis and prevent future cell growth.

Interestingly, what's implied from the background of the study abstract (sourced below) is that the protection against carcinogenesis provided by these garlic sulfur compounds was already known.

The researchers were attempting to determine the mechanics of how these compounds were so protective.

They found out how and more. They isolated the exact mechanics, detailed in the full study text below, and determined that these compounds are more than protective. They do what currently accepted brain cancer treatments are supposed to do but don't, while leaving other healthy cells alone which those "standard of care" treatments also don't.

It's recommended that one peels open garlic cloves and exposes them to air for 15 minutes or so to release those compounds. Some even say crush them for more exposure, then consume them raw to get the full benefits. This may not seem inviting to most. But is sure beats a slow agonizing death with a drool cup.

Garlic Can Heal the Brain—and It Has Other Health Benefits
Sometime yesterday, Ramesh Bjonnes posted an article here at the Elephant entitled, “Why Garlic Is a Brain Toxin!” I eat a lot of garlic, and I regularly recommend it to my clients for controlling cholesterol, boosting the immune system, and even for increasing testosterone levels in aging men. So I figured I’d better read the post.

I did. And then I did a Google Scholar search for “sulphone hydroxyl ion,” which is the constituent the author said causes brain toxicity. Nothing came up — I mean, like, zero. That’s rare for anything that actually exists in the world. What this means is that no scholar or scholarly journal, magazine, or web site has ever mentioned this substance. In general, that would mean it does not exist.

So then I did a Google Scholar search for “garlic, brain, toxicity,” assuming that if garlic is in any way toxic to the brain, someone would have noticed that by now (garlic is a widely studied subject). I did not find anything that suggests garlic is toxic to the brain, but many articles have looked at the ways in which garlic can remove other toxins from the brain, and maybe even stop neuronal apoptosis (neuron death).

In general, garlic (especially in very high doses, most commonly as an aged garlic supplement, which makes it more stable — beyond what one might get in the diet) is neuro-protective, anti-cancer (including its possible use to prevent Alzheimer’s Disease and other neuro-degenerative disorders), and may extend the life span of cells, and therefore, of us.

Each of the following is an open-source, academic, peer-reviewed study (you can read the whole study at the link):
Mechanisms of Inhibition of Chemical Toxicity and Carcinogenesis by Diallyl Sulfide (DAS) and Related Compounds from Garlic

Chung S. Yang, Saranjit K. Chhabra, Jun-Yan Hong and Theresa J. Smith
Laboratory for Cancer Research, College of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020

ABSTRACT
Diallyl sulfide (DAS) is a flavor compound derived from garlic and is sequentially converted to diallyl sulfoxide (DASO) and diallyl sulfone (DASO₂) by cytochrome P₄₅₀ 2E1 (CYP2E1). These compounds have been shown to reduce the incidence of a multitude of chemically induced tumors in animal models. The impediment of phase I activation of these carcinogens is hypothesized to be accountable for the reduction in tumor incidence. Indeed, DAS, DASO and DASO₂ are competitive inhibitors of CYP2E1. DASO₂, in addition, is a suicide inhibitor of CYP2E1. These compounds have been shown to reduce carbon tetrachloride-, N-nitrosodimethylamine- and acetaminophen-induced toxicity in rodents. All three chemicals are substrates for CYP2E1. The protective effect was observed when the organosulfur compounds were given before, during or soon after chemical treatment. DAS and DASO₂ inhibited the bioactivation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and related lung tumorigenesis in A/J mice. Because CYP2E1 does not play a key role in NNK activation, the inhibition of other CYP enzymes active in NNK metabolism is likely. DAS also has been shown to induce other CYP and phase II enzymes as well as decrease hepatic catalase activity. All of these effects are observed at concentrations much higher than what is normally ingested by humans. The biological activities of garlic and its related compounds at lower concentrations that mimic human consumption remain to be studied further.

Antioxidant Health Effects of Aged Garlic Extract
Carmia Borek
Department of Community Health and Family Medicine, Nutrition and Infectious Diseases Unit, Tufts University School of Medicine, Boston, MA 02111

ABSTRACT
Oxidative modification of DNA, proteins and lipids by reactive oxygen species (ROS) plays a role in aging and disease, including cardiovascular, neurodegenerative and inflammatory diseases and cancer. Extracts of fresh garlic that are aged over a prolonged period to produce aged garlic extract (AGE) contain antioxidant phytochemicals that prevent oxidant damage. These include unique water-soluble organosulfur compounds, lipid-soluble organosulfur components and flavonoids, notably allixin and selenium. Long-term extraction of garlic (up to 20 mo) ages the extract, creating antioxidant properties by modifying unstable molecules with antioxidant activity, such as allicin, and increasing stable and highly
bioavailable water-soluble organosulfur compounds, such as S-allylcysteine and S-allylmercaptocysteine. AGE exerts antioxidant action by scavenging ROS, enhancing the cellular antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, and increasing glutathione in the cells. AGE inhibits lipid peroxidation, reducing ischemic/reperfusion damage and inhibiting oxidative modification of LDL, thus protecting endothelial cells from the injury by the oxidized molecules, which contributes to atherosclerosis. AGE inhibits the activation of the oxidant-induced transcription factor, nuclear factor (NF)-κB, which has clinical significance in human immunodeficiency virus gene expression and atherogenesis. AGE protects DNA against free radical-mediated damage and mutations, inhibits multistep carcinogenesis and defends against ionizing radiation and UV-induced damage, including protection against some forms of UV-induced immunosuppression. AGE may have a role in protecting against loss of brain function in aging and possess other antiaging effects, as suggested by its ability to increase cognitive functions, memory and longevity in a senescence-accelerated mouse model. AGE has been shown to protect against the cardiotoxic effects of doxorubicin, an antineoplastic agent used in cancer therapy and against liver toxicity caused by carbon tetrachloride (an industrial chemical) and acetaminophen, an analgesic. Substantial experimental evidence shows the ability of AGE to protect against oxidant-induced disease, acute damage from aging, radiation, and chemical exposure, and long-term toxic damage. Although additional observations are warranted in humans, compelling evidence supports the beneficial health effects attributed to AGE, i.e., reducing the risk of cardiovascular disease, stroke, cancer and aging, including the oxidant-mediated brain cell damage that is implicated in Alzheimer’s disease.

* * *

For this next one, I’m posting the whole introduction since it covers so many of the research findings on the health benefits of garlic.

Garlic Reduces Dementia and Heart-Disease Risk

Carmia Borek

Department of Public Health and Family Medicine, Tufts University School of Medicine, Boston, MA 02111

ABSTRACT

Risk factors for cardiovascular disease, including high cholesterol, high homocysteine, hypertension and inflammation, increase the risk of dementia, including its most common form, Alzheimer’s disease (AD). High cholesterol is also associated with elevated β-amyloid (Abeta), the hallmark of AD. Oxidative damage is a major factor in cardiovascular disease and dementia, diseases whose risk increases with age. Garlic, extracted and aged to form antioxidant-rich aged garlic extract (AGE or Kyolic), may help reduce the risk of these diseases. AGE scavenges oxidants, increases superoxide dismutase, catalase, glutathione peroxidase, and glutathione levels, and inhibits lipid peroxidation and inflammatory
prostaglandins. AGE reduces cholesterol synthesis by inhibiting 3-hydroxy-3-methylglutaryl-CoA reductase and is additive with statins in its action. Inhibition of cholesterol, LDL oxidation, and platelet aggregation by AGE, inhibits arterial plaque formation; AGE decreases homocysteine, lowers blood pressure, and increases microcirculation, which is important in diabetes, where microvascular changes increase heart disease and dementia risks. AGE also may help prevent cognitive decline by protecting neurons from Abeta neurotoxicity and apoptosis, thereby preventing ischemia- or reperfusion-related neuronal death and improving learning and memory retention. Although additional observations are warranted in humans, compelling evidence supports the beneficial health effects attributed to AGE in helping prevent cardiovascular and cerebrovascular diseases and lowering the risk of dementia and AD.

INTRODUCTION

Recent evidence suggests that midlife risk factors for cardiovascular disease, such as high cholesterol, hypertension, high homocysteine, and inflammation, are important risk factors for dementia in later years (1–5), with high cholesterol and hypertension showing a consistent association with increased risk of Alzheimer’s disease (AD) and vascular dementia, pathological conditions whose frequency increases with age.

High cholesterol levels promote the formation of atherosclerotic plaques that are risk factors for both heart attacks and stroke, in the latter case the resulting ischemia may result in neuronal death and lead to dementia. High cholesterol is also associated with increased levels of free-radical–producing β-amyloid peptides (Abeta), the hallmark of AD. Hypertension may contribute to cognitive decline seen in AD by causing cerebral small-vessel pathology and increasing the number of neurofibrillary tangles and amyloid plaques. Small-vessel disease resulting from hypertension may be associated with the observed atrophy of the hippocampus and amygdala in AD (6).

Elevated plasma homocysteine (hyperhomocysteinemia) is an independent risk factor for cardiovascular disease, stroke, and dementia, including AD (7,8). Studies on people 65 y and older and on young people ages 4–18 show that plasma levels of homocysteine increase progressively with age, posing a serious threat for these diseases in aging individuals. Hyperhomocysteinemia is caused largely by deficiencies in vitamins B-6, B-12, and folate. The adverse vascular and neurotoxic effects of homocysteine are associated with oxidant stress; homocysteine impairs DNA repair in the hippocampus, sensitizing neurons to amyloid toxicity (9).

Reactive oxygen species. Reactive oxygen species and oxidant stress are implicated in cardiovascular disease, cancer, and various forms of dementia including AD (10). Oxidative damage to DNA, proteins, lipids, and other molecules rank high as a major cause in the onset and development of these diseases. Reactive oxygen species, including free radicals, are by-products of normal metabolism and increase during infection and inflammation, hyperhomocysteinemia, and exposure to exogenous sources, including nitrous oxide metabolite pollutants, smoking, certain drugs (e.g., acetaminophen), and radiation. Oxidative modification of LDL cholesterol increases the risk of atherosclerosis, cardiovascular, and cerebrovascular disease. Free radical–producing Abeta triggers neuronal apoptosis, increasing the risk of brain atrophy and dementia, including AD, its most common form (11).

Garlic antioxidants. Garlic ranks highly among foods that help prevent disease, largely due to its high content of organosulfur compounds and antioxidant activity. Fresh garlic, however, may cause indigestion,
and its pungent odor that lingers on the breath and skin can be a social deterrent. These disagreeable effects of fresh garlic are due to allicin, an oxidant released upon cutting or chewing the clove.

Aged garlic extract. An alternative source of garlic that is odorless and rich in antioxidants is aged garlic extract (AGE) (12,13). The well-standardized and highly bioavailable supplement is produced by prolonged extraction and aging of organic fresh garlic at room temperature. The process converts unstable compounds, such as allicin, tostable substances and produces high levels of water-soluble organosulfur compounds that are powerful antioxidants. These include S-allylcysteine (SAC), AGE’s major component, and S-allylmercaptocysteine, unique to AGE. Among other compounds present are low amounts of oil-soluble organosulfur compounds, flavonoids, a phenol, allixin, selenium, and saponins.

AGE and cardiovascular disease. AGE has been shown to modulate cardiovascular risk factors in both clinical and preclinical settings (14–23). AGE has been shown to reduce blood pressure, inhibit platelet aggregation and adhesion, lower LDL and elevate HDL cholesterol, reduce smoking-related oxidative damage, inhibit the production of prostaglandins involved in inflammation, and lower homocysteine. SAC has been found to lower cholesterol by deactivate 3-hydroxy-3-methylglutaryl-CoA by as much as 41% (15). AGE efficacy in reducing cholesterol synthesis is additive with statins, which inhibit 3-hydroxy-3-methylglutaryl-CoA reductase at a transcriptional level. Other possible contributors to protection against cardiovascular disease and dementia are the effects of AGE in increasing microcirculation (21) and protecting endothelial cells from oxidative damage, a factor most important in diabetes where the microvasculature is damaged, and the risk of dementia is high. AGE can also temporarily increase, by 30–40% (23), the synthesis of constitutive nitric oxide, a protective factor against myocardial ischemic or reperfusion injury, risk factors in cardiovascular disease and dementia following stroke (24). AGE has been found to inhibit the progression of coronary-artery calcification (25), thus reducing the risk of a myocardial infarct.

AGE and the heart-dementia risk link: neuroprotective effects. The broad range of cardiovascular protection afforded by AGE may be extended to a protective effect on the brain, helping reduce the risk of dementia, including vascular dementia and AD. AGE has potential to protect the brain against neurodegenerative conditions. Mechanisms include lowering cholesterol, inhibiting inflammation, reducing homocysteine, preventing oxidative brain injury following ischemia, protecting neuronal cells against apoptosis (a programmed cell suicide triggered by oxidative stress) by inhibiting caspase 3, and preventing Abeta-induced neurotoxicity.

Homocysteine. People with cardiovascular risk factors and a history of stroke have an increased risk of both vascular dementia (arteriosclerotic dementia), which can occur after a stroke, and AD, the most common form of progressive dementia, accounting for over 70% of all cases. Elevated homocysteine damages endothelial cells that line blood vessels and induces thrombosis that can lead to heart attacks and stroke. Homocysteine produces breaks in DNA and induces apoptosis, a major cause of neuronal death in dementia (7–9). The link between high levels of homocysteine and dementia, including AD, has been observed in epidemiological studies and confirmed in case-control studies, where people with vascular dementia and AD had higher levels of homocysteine than healthy people. A recent study (7) provided compelling evidence of a direct link between increased plasma homocysteine and loss of cognition, showing that in adults with intact cognition, an elevation in plasma homocysteine, over time, is associated with an increased incidence of dementia, including AD.
Consumption of AGE has been shown to reduce homocysteine levels. In a preclinical study, levels of homocysteine in a 4-wk folate-deficient diet containing AGE were compared with a folate-fortified diet containing AGE. Plasma homocysteine was 30% lower in the folate-deficient animals that received AGE, but not in those with adequate folate. The results suggest that AGE may serve as an added treatment in hyperhomocysteinemia (26). A clinical study, showing that AGE inhibits the progression of coronary artery calcification, also showed a trend in lowering homocysteine levels (25).

Protection against ischemic or reperfusion adverse effects. Single ischemic or thromboembolic infarcts that occur in strategic areas of the brain hemispheres may cause a dementia-like syndrome; multiple temporally staggered small cerebral infarcts can give rise to progressive cognitive deficits and dementia. Areas of the brain supplied by small penetrating arterioles are especially prone to degenerative changes in patients with hypertension and diabetes. Ischemia followed by reperfusion results in an increased production of free radicals and oxidant stress that may lead to neuronal death by apoptosis and contribute to the development of dementia following stroke. AGE has been shown to lower blood pressure and protect brain cells from the deleterious effects of ischemia, increasing their survival. The high antioxidant level in AGE helps prevent the oxidant damage that occurs during ischemia or reperfusion. The protective effects of AGE were observed in a preclinical study of ischemia, and the findings showed that treatment with SAC attenuated damaging reactive oxygen species and prevented brain injury, reducing infarct volume. None of the lipid-soluble compounds tested had a protective effect (27). SAC prevented neuronal death following ischemia and increased cell survival in the hippocampus, the memory region of the brain, by 30%, compared with controls (28).

Preventing neuronal apoptosis. The brain of an individual with AD exhibits extracellular plaques of aggregated Abeta, intracellular neurofibrillary tangles that contain hyperphosphorylated tau protein and a loss of forebrain cholinergic neurons that enervate the hippocampus and the neocortex. The accumulation of Abeta may trigger or contribute to neurodegeneration. Neuronal apoptosis, one of the characteristics of Alzheimer's disease, is associated with Abeta. Reactive oxygen species produced by Abeta are thought to play a role in the apoptotic mechanism of Abeta-mediated neurotoxicity.

Several routes lead to apoptotic cell death; a major route is through a mitochondrial-dependent pathway that results in the release of cytochrome C, followed by the activation of caspases, with caspase-3 leading cells to their death (29). AGE and SAC have been shown in a number of in vitro studies to protect neuronal cells against Abeta toxicity and apoptosis (30–34). In none of the studies, PC12 cells exposed to Abeta showed a significant increase in reactive oxygen species. Treatment with AGE and SAC suppressed the generation of reactive oxygen species and also attenuated caspase-3 activation and DNA fragmentation, associated with apoptosis, and protected the cells against Abeta-induced apoptosis. In another study AGE was found to inhibit caspase-3 in a dose-dependent manner (33). Caspase-3 catalyzes the formation of Abeta peptide (34) and is activated by Abeta (35). Their neurotoxic effects, however, appear to be independent; that is, in the presence of specific caspase inhibitors, Abeta-induced neuronal death still occurred with different morphological features (35). The findings that AGE can inhibit Abeta toxicity, attenuate caspase-3 activation, and inhibit apoptosis enhances the potential of AGE as a neuroprotector against AD.

Other anti-aging neuroprotective effects. Preclinical studies in models that are genetically prone to early aging show that AGE has additional anti-aging effects (36,37). Treatment with AGE or SAC
prevented the degeneration of the brain’s frontal lobe, improved learning and memory retention, and extended life span. Isolated neurons from the hippocampus area, grown in the presence of AGE or SAC, showed an unusual ability to grow and branch, which may be linked to the finding that AGE increases learning and cognition (37).

* * * *

Intake of Garlic and Its Bioactive Components

Harunobu Amagase, Brenda L. Petesch, Hiromichi Matsuura, Shigeo Kasuga and Yoichi Itakura

Department of Research and Development, Wakunaga of America Company, Mission Viejo, CA 92691 and *Institute for OTC Research, Wakunaga Pharmaceutical Company, Hiroshima 739-11, Japan*

ABSTRACT

The health benefits of garlic likely arise from a wide variety of components, possibly working synergistically. The complex chemistry of garlic makes it plausible that variations in processing can yield quite different preparations. Highly unstable thiosulfinates, such as allicin, disappear during processing and are quickly transformed into a variety of organosulfur components. The efficacy and safety of these preparations in preparing dietary supplements based on garlic are also contingent on the processing methods employed. Although there are many garlic supplements commercially available, they fall into one of four categories, i.e., dehydrated garlic powder, garlic oil, garlic oil macerate and aged garlic extract (AGE). Garlic and garlic supplements are consumed in many cultures for their hypolipidemic, antiplatelet and procirculatory effects. In addition to these proclaimed beneficial effects, some garlic preparations also appear to possess hepatoprotective, immune-enhancing, anticancer and chemopreventive activities. Some preparations appear to be antioxidative, whereas others may stimulate oxidation. These additional biological effects attributed to AGE may be due to compounds, such as S-allylcysteine, S-allylmercaptocysteine, N- fructosylarginine and others, formed during the extraction process. Although not all of the active ingredients are known, ample research suggests that several bioavailable components likely contributed to the observed beneficial effects of garlic.

I did come across one article – [Garlic as an antioxidant: the good, the bad and the ugly](https://www.ncbi.nlm.nih.gov/pubmed/25025482) – that suggests whole garlic in high doses may have some toxicity for the liver, kidneys, and heart. Unfortunately, the article is not open-source [always lame when information is kept behind a pay-wall]. However, in following that rat trail, I did come across this article:

Clarifying the Real Bioactive Constituents of Garlic

Harunobu Amagase

Department of Research and Development, Wakunaga of America Co., Mission Viejo, CA 92691

ABSTRACT
Compounds in garlic work synergistically to produce various effects, but, because of garlic's chemical complexity, processing methods yield preparations with differing efficacy and safety. Although thiosulfinates such as allicin have been long misunderstood to be active compounds due to their characteristic odor, it is not necessary for garlic preparations to contain such odorous compounds to be effective, and they decompose and disappear during any processing. Garlic exhibits hypolipidemic, antiplatelet, and procirculatory effects. It prevents cold and flu symptoms through immune enhancement and demonstrates anticancer and chemopreventive activities. In addition, aged garlic extract possesses hepatoprotective, neuroprotective, antioxidative activities, whereas other preparations may stimulate oxidation. Additional effects may be caused by S-allylcysteine, S-allyl mercaptocysteine, saponins, N-fructosylarginine, and other substances formed during a long-term extraction process. Although not all of active ingredients of garlic are known, and allicin-like transient components are not directly active, ample research suggests that an allicin-free garlic preparation that is standardized with a bioavailable component such as S-allylcysteine, is active and various effects of garlic may be attributed to it. Furthermore, various chemical constituents in garlic products, including nonsulfur compounds such as saponins, may contribute to the essential biological activities of garlic. Further studies are needed to confirm their bioavailability and associated activities.

So, my advice? Get some whole garlic, press it, add it to some ground basil, and a little bit of extra virgin olive oil, with whatever other ingredients you like (maybe some Romano cheese), then slather some over the top of a grilled free-range chicken breast covered in melted Havarti cheese. Add some steamed asparagus, also covered with some pesto and grated cheese, and you have a really healthy dinner that is good for your heart, your immune system, and your brain.

About William Harryman

I am a writer/editor, fitness trainer, integral coach, and a graduate counseling psychology student. I blog at Integral Options Cafe and The Masculine Heart. I am an occasional contributor to Elephant Journal. Read more from William Harryman »
Health Benefits of Garlic

Beware! It's the Opposite of What you Might Think - Garlic Desynchronises your Brainwaves!

Source: From a lecture by Dr. Robert C Beck, DSc, given at the Whole Life Expo, Seattle, WA, USA, in March 1996. printed by Nexus Magazine

The reason garlic is so toxic, the sulphone hydroxyl ion penetrates the blood-brain barrier, just like DMSO, and is a specific poison for higher-life forms and brain cells. We discovered this, much to our horror, when I (Bob Beck, DSc) was the world's largest manufacturer of ethical EEG feedback equipment.

We’d have people come back from lunch that looked clinically dead on an encephalograph, which we used to calibrate their progress. "Well, what happened?’ "Well, I went to an Italian restaurant and there was some garlic in my salad dressing!’ So we had them sign things that they wouldn't touch garlic before classes or we were wasting their time, their money and my time.

I guess some of you who are pilots or have been in flight tests...I was in flight test engineering in Doc Hallan's group in the 1950's. The flight surgeon would come around every month and remind all of us: "Don't you dare touch any garlic 72 hours before you fly one of our airplanes, because it'll double or triple your reaction time. You're three times slower than you would be if you'd not had a few drops of garlic.''

Well, we didn't know why for 20 years later, until I owned the Alpha-Metrics Corporation. We were building biofeed-back equipment and found out that garlic usually desynchronises your brain waves.

So I funded a study at Stanford and, sure enough, they found that it's a
poison. You can rub a clove of garlic on your foot - a you can smell it shortly later on your wrists. So it penetrates the body. This is why DMSO smells a lot like garlic: that sulphone hydroxyl ion penetrates all the barriers including the corpus callosum in the brain.

Any of you who are organic gardeners know that if you don't want to use DDT, garlic will kill anything in the way of insects.

Now, most people have heard most of their lives garlic is good for you, and we put those people in the same class of ignorance as the mothers who at the turn of the century would buy morphine sulphate in the drugstore and give it to their babies to put'em to sleep.

If you have any patients who have low-grade headaches or attention deficit disorder, they can't quite focus on the computer in the after-noon, just do an experiment - you owe it to yourselves. Take these people off garlic and see how much better they get, very very shortly. And then let them eat a little garlic after about three weeks. They'll say "My God, I had no idea that this was the cause of our problems." And this includes the de-skunked garlic's, Kyolic, some of the other products.

Very unpopular, but I've got to tell you the truth.

Editor's Notes:

1) Taoists and some other spiritual practices recommend against eating any garlic, onions, green onions (shallots), chives or leeks. This is because they believe they attract negative energies - bad energies love bad smells. However, I understand that the problem with garlic is much more serious than this, due to the reasons above. It has very toxic chemicals in it, in addition to the spiritual effects.

2) I was emailed that because garlic is meant to be a blood purifier, that maybe the brain changes are caused by toxins coming out into the bloodstream. Maybe. But I believe that is not the case. Generally, the stronger something tastes, the more toxins it has. That's what gives it flavor. For example, no woman with morning sickness wants to be anywhere near garlic. If it was not toxic, you could sit down to a meal of garlic. And would smell fine afterwards!

3) READ THE LABEL! SOME FOODS THAT CONTAIN GARLIC:
1. Some chips
2. Sweet chili sauce (There's as much garlic in it as chili! Plus it's 50% sugar)

4) ALTERNATIVE TO GARLIC: Use fresh ginger

UPDATE: *I personally believe that anything that kills microbes, is bad for your health when there is nothing wrong with you, especially long-term. But if there is some kind of disease, then garlic may be useful for a while. Here are some positive reports on garlic from a reader:*

"Garlic is a very powerful herb. I dissolved a tumor in my neck with it. It took about 3 hours. Doctors would have put me in surgery and cut me open and done who knows what damage to my neck and spine in order to get it out. I have also taken off warts and other cysts on many people using garlic topically as well as neutralizing yeast infections over night- no 3 day or 7 day systems where you are putting toxic chemicals inside you.

Taken internally, no self respecting virus can survive in your body when taking garlic. I look at it as a natural and mild form of Chemical type treatments that people get when fighting cancer. It can neutralize all forms of cancers in the body on contact, something ginger just cannot do, and it can do this in just a few days instead of months or years. And it won't take you to the brink of death while performing this miraculous feat.

Taken internally injunction with a poultice type bandage applied directly on the affected area, garlic can heal almost any type of terminal issue. Obviously some forms that have gone into the latter stages cannot be helped without divine intervention but there are few exceptions to this.

H1N1 or H5N1? Forget it!! Garlic will wipe this out in a few hours. It will also take out the flora in your digestive track but a few servings of fruits and vegetables and yogurt will replenish this in no time at all.

I do understand the challenge with garlic and the very delicate processes of the brain and the barrier between the brain and cranial blood flow. When you eat several cloves of garlic, you can feel it. However, the effects are never permanent and they can be countered at the time simply by eating or drinking the juice from a head of parsley. In juicing terms, that would be approximately 2 ounces, which of course should be mixed 50% - 50% with a carrot juice, but this will counter act the effects of the sulphone ion on the brain processes."
Garlic - Toxic And A Brain Synchronization Destroyer

Reiki Empowerment Seminars

4-30-7

I have been telling people this for years, all you need is an ECG of the brain to see the truth .. it totally desynchronizes the brain and cause us to loose our psychic mind ... yes our psychic mind, we are Human not slaves to the race of beings that control us ... this doesn't mean much to most ...

Garlic is not only repulsive to any one that eats it for hours ... but it makes us stupid slow and simple ... this is hard for most people to grasp, do the ECG and do the experiment yourselves ... read this article on this and you will be amazed it does clean the blood but it also destroys the total mind synchronization of the two hemispheres .. I was heart broken, when I heard of this because I love the smell of garlic and onions ... but oh well ... once you find out they are a neuro poison then it makes al the sense in the world when you eat it ... what happens to you ! ... you smell awful and are totally repulsed by others . most are generally being nice not to tell you ... YOU STINK .. stay your distance !

it is also the best organic insect killer, too, is there a reason why no bug will eat garlic or any of the onion family...because it kills them.

The reason garlic is so toxic, the sulphone hydroxyl ion penetrates the blood brain barrier, just like DMSO, and is a specific poison for higher life forms and brain cells. We discovered this much to our horror, when I was the world's largest manufacturer of ethical EEG biofeedback equipment. We'd have people come back from lunch that looked clinically dead on the encephalograph, which we used to calibrate their progress. "Well, what happened?" " Well, I went to an Italian restaurant and there was some garlic in my salad dressing!"

So we had 'em sign things that they won't touch garlic before classes or we were wasting their time, and money and my time. I guess those of you who are pilots or have been in flight tests... I was in flight test engineering in Doc Hallan's group in the 1950's. The flight surgeon would come around every month and remind all of us: "Don't you dare touch any garlic 72 hours before you fly one of our airplanes, because it'll double or triple your reaction time. You're three times slower than you would be if you'd [not] had a few drops of garlic."
Well, we didn't know why for 20 years later, until I owned the Alpha-Metrics Corporation. We were building biofeedback equipment and found out that garlic totally desynchronizes your brain waves. So I funded a study at Stanford and, sure enough, they found that it's a poison. You can rub a clove of garlic on your foot - on the sole of your foot - and you can smell it shortly later on your wrists. So it penetrates the body. This is why DMSO smells a lot like garlic: that sulphone hydroxyl ion penetrates all the barriers including the corpus callosum in the brain. Any of you who are organic gardeners know that if you don't want to use DDT, garlic will kill anything in the way of insects. Now, most people have heard most of their lives that garlic is good for you, and we put those people in the same class of ignorance as the mothers who at the turn of the century would buy morphine sulphate in the drugstore and give it to their babies to put 'em to sleep. If you have any patients who have low-grade headaches or attention deficit [disorder], they can't quite focus on the computer in the afternoon, just do an experiment - you owe it to yourselves. Take those people off garlic and see how much better they get, very, very shortly. And then let them eat a little garlic after about three weeks. They'll say: "My God, I had no idea that this was the cause of our problems." And this includes the des-skunked garlic's, Kyolic, some of the other products. Very unpopular, but I've got to tell you the truth. (Source: From a lecture by Dr Robert [Bob] C. Beck, DSc., given at the Whole Life Expo, Seattle, WA, USA, in March 1996)

Bob Beck also found in his research on human brain function in the 1980's that garlic has a detrimental effect on the brain and researching this further he learned that many yoga groups and philosophical teachings caution against the use of garlic and onions as they are known to interfere with meditation practices. Some aware individuals have actually described themselves as experiencing brain fog after having garlic.

The Harmful Effects of Garlic

Garlic is toxic to humans because its sulphone hydroxyl ions penetrate the blood-brain barrier and are poisonous to brain cells.(1) For precisely the same reason the garlic family of plants has been widely recognized as being harmful to dogs.(2) As far back as the 1950s it was known that garlic reduced reaction time by two to three times when consumed by pilots taking flight tests. This is because the toxic effects of garlic desynchronize brain waves.

The Taoists realized thousands of years ago that plants of the alliaceous family were detrimental to humans.(3) They labeled this group of plants
onions, garlic, leeks, chives and spring onions the 'five spicy-scented plants.' They noticed that onions are harmful to the lungs, garlic to the heart, leeks to the spleen, chives to the liver and spring onions to the kidneys. Hindus also avoid this group, which they have called the 'five pungent plants.'(4) As well as producing offensive breath and body odour, these plants induce aggravation, agitation, anxiety and aggression. Thus they are harmful physically, emotionally, mentally and spiritually.

Even when garlic is used as food in Chinese culture it is considered harmful to the stomach, liver and eyes, and a cause of dizziness and scattered energy when consumed in immoderate amounts.(5) Nor is garlic always seen as having entirely beneficial properties in Western cooking and medicine. It is widely accepted among health care professionals that, as well as killing harmful bacteria, garlic also destroys beneficial bacteria,(6) which are essential to the proper functioning of the digestive system. Furthermore, Ken Bergeron, in Professional Vegetarian Cooking, p. 16, writes: "garlic in the raw state can carry harmful (potentially fatal) botulism bacteria." Perhaps it is with an awareness of this that the Roman poet Horace wrote of garlic that it is "more harmful than hemlock."(7)

In the practice of Reiki, we have noticed that garlic and onions are some of the first toxic substances that are expelled from a person's system along with tobacco, alcohol and pharmaceutical medications. This makes it apparent that alliaceous plants have a negative effect on the human body and should be avoided for health reasons. Homeopathic medicine comes to the same conclusion when it recognizes that red onion produces a dry cough, watery eyes, sneezing, runny nose and other familiar cold-related symptoms when consumed.(8)

Reiki Empowerment Seminars: Taoist Knowledge

Did Bob Beck fund a Stanford University study on garlic?

I've read an article by Dr. Beck that states garlic is a brain toxin due to the sulphone hydroxyl ions released into the bloodstream. He cites a Stanford University study that found garlic to be a poison. http://www.healingcancernaturally.com/ga...

However...there were no links given to the source study documentation nor were any other details of the study given (such as date, which would be useful in tracking down said study)
I have searched Stanford's site and the only articles I've found are on the health benefits. Further, having searched for "sulphone hydroxyl" online, I've only come across copies of the same article. The same is true for Bob Beck/Robert Beck and and kind of Stanford study on garlic.

So...can anyone shed light on this? I do have respect for the man's other achievements, but the vagueness of this article frustrates me. I need scientific data, which one expects to receive from a scientist. If someone can prove to me one way or the other whether this supposed study really did take place, then it'll be at least a starting point for my continued search.

Garlic

What's New and Beneficial About Garlic

- You can increase the health benefits you receive from garlic by letting it sit after you've chopped it or crushed it. If you give your chopped/crushed garlic time to sit before changing its temperature (through cooking) or its pH (through the addition of acidic food like lemon juice), it will give the alliinase enzymes in garlic an opportunity to work on behalf of your health. For example, in the absence of chopping or crushing, research has shown that just 60 seconds of immediate microwaving will cause garlic to lose some of its cancer-protective properties. Immediate boiling of whole, intact garlic will also lower these properties, as will immediate addition of a very low-acid ingredient like lemon juice.

- Some of garlic's unique components are most durable in food (versus processed extract) form. Allicin—one of garlic's most highly valued sulfur compounds—stays intact for only 2-16 hours at room temperature when it is present in purified (extracted) form. But when it's still inside of crushed garlic, allicin will stay viable for 2-1/2 days.
• Garlic may help improve your iron metabolism. That's because the diallyl sulfides in garlic can help increase production of a protein called ferroportin. (Ferroportin is a protein that runs across the cell membrane, and it forms a passageway that allows stored iron to leave the cells and become available where it is needed.)

• In addition to being a good source of selenium, garlic may be a more reliable source as well. Garlic is what scientists call a "seleniferous" plant: it can uptake selenium from the soil even when soil concentrations do not favor this uptake.

• The cardioprotective benefits of garlic may partly rest on the production of hydrogen sulfide (H2S) gas. Our red blood cells can take sulfur-containing molecules in garlic (called polysulfides) and use them to produce H2S. This H2S in turn can help our blood vessels expand and keep our blood pressure in check. Interestingly, some processed garlic extracts cannot be used by our red blood cells in the same way and do not seem to provide the same level of cardioprotection that is provided by garlic in food form.

• While still in its very early stages, research suggests that garlic consumption may actually help to regulate the number of fat cells that get formed in our body. 1,2-DT (1,2-vinyldithiin) is one of the unique sulfur compounds in garlic that has long been recognized as having anti-inflammatory properties. But only recently have researchers discovered that some of our fibroblastic cells (called "preadipocytes") only evolve into full-fledged fat cells (called "adipocytes") under certain metabolic circumstances involving inflammatory system activity. 1,2-DT may be able to inhibit this conversion process. Since obesity is increasingly viewed by researchers as a chronic state of low-grade inflammation, the inflammation-related benefits of garlic's 1,2-DT may eventually be extended into the clinical area of obesity.

WHFoods Recommendations

With their unique combination of flavonoids and sulfur-containing nutrients, allium vegetables—such as garlic—belong in your diet on a regular basis. There's research evidence for including at least one serving of an allium vegetable—such as garlic—in your meal plan every day. If you're choosing garlic as your allium family vegetable, try to include at least 1/2 clove in your individual food portion. If you're preparing a recipe, we recommend at least 1-2 cloves.

Garlic is a wonderful seasoning to add aroma, taste, and added nutrition to your dishes. We often recommend using raw chopped or pressed garlic in many of our dishes to take advantage of the benefits derived from garlic. However, if you cannot tolerate raw garlic, you can add chopped garlic to foods while they are cooking. It is best to add it towards the end of the cooking process to retain the maximum amount of flavor and nutrition.
This chart graphically details the %DV that a serving of Garlic provides for each of the nutrients of which it is a good, very good, or excellent source according to our Food Rating System. Additional information about the amount of these nutrients provided by Garlic can be found in the Food Rating System Chart. A link that takes you to the In-Depth Nutritional Profile for Garlic, featuring information over 80 nutrients, can be found under the Food Rating System Chart.

- Health Benefits
- Description
- History
- How to Select and Store
- Tips for Preparing and Cooking
- How to Enjoy
- Individual Concerns
- Nutritional Profile
- References

Health Benefits

Whole books have been written about garlic, an herb affectionately called "the stinking rose" in light of its numerous therapeutic benefits. A member of the lily or Allium family, which also includes onions and leeks, garlic is rich in a variety of powerful sulfur-containing compounds including thiosulfinates (of which the best known compound is allicin), sulfoxides (among which the best known compound is alliin), and dithiins (in which the most researched compound is ajoene). While these compounds are responsible for garlic's characteristically pungent odor, they are also the source of many of its health-promoting effects.

More recent research has identified additional sulfur-containing compounds that are responsible for garlic's star status as a health-supporting food. These sulfur compounds include 1,2-vinylthiin (1,2-DT), and thiacremonone. The hydrogen sulfide gas (H2S) that can be made from garlic's sulfides has also been the subject of great research interest. When produced and released from our red blood cells, this H2S gas can help dilate our blood vessels and help keep our blood pressure under control.

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>%DV</th>
</tr>
</thead>
<tbody>
<tr>
<td>manganese</td>
<td>15%</td>
</tr>
<tr>
<td>vitamin B6</td>
<td>12.6%</td>
</tr>
<tr>
<td>vitamin C</td>
<td>7.4%</td>
</tr>
<tr>
<td>copper</td>
<td>5.5%</td>
</tr>
<tr>
<td>selenium</td>
<td>4.5%</td>
</tr>
<tr>
<td>phosphorus</td>
<td>3.9%</td>
</tr>
<tr>
<td>vitamin B1</td>
<td>3.3%</td>
</tr>
<tr>
<td>calcium</td>
<td>3.2%</td>
</tr>
</tbody>
</table>
Finally, when thinking about the sulfur compounds in garlic, it is important to remember that sulfur itself is a key part of our health. Several research studies have noted that the average U.S. diet may be deficient in sulfur, and that foods rich in sulfur may be especially important for our health. In addition to all of the sulfur-related compounds listed above, garlic is an excellent source of manganese and vitamin B6, a very good source of vitamin C, and a good source of selenium.

Cardiovascular Benefits

Most of the research on garlic and our cardiovascular system has been conducted on garlic powder, garlic oil, or aged garlic extracts rather than garlic in food form. But despite this research limitation, food studies on garlic show this allium vegetable to have important cardioprotective properties. Garlic is clearly able to lower our blood triglycerides and total cholesterol, even though this reduction can be moderate (5-15%).

But cholesterol and triglyceride reduction are by no means garlic's most compelling benefits when it comes to cardioprotection. Those top-level benefits clearly come in the form of blood cell and blood vessel protection from inflammatory and oxidative stress. Damage to blood vessel linings by highly reactive oxygen molecules is a key factor for increasing our risk of cardiovascular problems, including heart attack and atherosclerosis. Oxidative damage also leads to unwanted inflammation, and it is this combination of unwanted inflammation and oxidative stress that puts our blood vessels at risk of unwanted plaque formation and clogging. Garlic unique set of sulfur-containing compounds helps protect us against both possibilities—oxidative stress and unwanted inflammation.

The following provides a list of sulfur-containing garlic's constituents that help lower our risk of oxidative stress:

- alliin
- allicin
- allixin
- allyl polysulfides (APS)*
- diallyl sulfide (DAS)
- diallyl disulfide (DADS)
- diallyl trisulfide (DATS)
- N-acetylcysteine (NAC)
- N-acetyl-S-allylcysteine (NASC)
- S-allylcysteine (SAC)
- S-allymercaptocysteine (SAMC)
- S-ethylcysteine (SEC)
- S-methylcysteine (SMC)
- S-propylcysteine (SPC)
- 1,2-vinylidithiin (1,2-DT)
- thiacremonone

* "Allyl polysulfides" is a general term that refers to a variety of compounds.

On the anti-inflammatory side of the equation, garlic's 1,2-vinylidithiin (1,2-DT) and thiacremonone are the compounds that have been of special interest in recent research. Both compounds appear to work by inhibiting the activity of inflammatory messenger molecules. In
In the case of thiacremonone, it is the inflammatory transcription factor called NFκB that gets inhibited. In the case of 1,2-DT, the exact anti-inflammatory mechanisms are not yet clear, even though the release of inflammatory messaging molecules like interleukin 6 (IL-6) and interleukin 8 (IL-8) by macrophage cells has been shown to be reduced in white adipose tissue by 1,2-DT. The combination of anti-inflammatory and anti-oxidative stress compounds in garlic makes it a unique food for cardiovascular support, especially in terms of chronic degenerative cardiovascular conditions like atherosclerosis.

In addition to the ability of garlic to help prevent our blood vessels from becoming blocked, this allium vegetable may also be able to help prevent clots from forming inside of our blood vessels. This cardiovascular protection has been linked to one particular disulfide in garlic called ajoene. Ajoene has repeatedly been shown to have anti-clotting properties. It can help prevent certain cells in our blood (called platelets) from becoming too sticky, and by keeping this stickiness in check, it lowers the risk of our platelets clumping together and forming a clot.

Equally impressive about garlic is its ability to lower blood pressure. Researchers have known for about 10 years that the allicin made from alliin in garlic blocks the activity of angiotensin II. A small piece of protein (peptide), angiotensin II helps our blood vessels contract. (When they contract, our blood is forced to pass through a smaller space, and the pressure is increased.) By blocking the activity of angiotensin II, allicin from garlic is able to help prevent unwanted contraction of our blood vessels and unwanted increases in blood pressure.

More recently, however, researchers have found that garlic supports our blood pressure in a second and totally different way. Garlic is rich in sulfur-containing molecules called polysulfides. It turns out that these polysulfides, once inside our red blood cells (RBCs), can be further converted by our RBCs into a gas called hydrogen sulfide (H2S). H2S helps control our blood pressure by triggering dilation of our blood vessels. When the space inside our blood vessels expands, our blood pressure gets reduced. (H2S is described as a "gasotransmitter" and placed in the same category as nitric oxide (NO) as a messaging molecule that can help expand and relax our blood vessel walls.) Interestingly, our RBCs do not appear to use processed garlic extracts in the same way that they use polysulfides in food-form garlic.

Garlic's numerous beneficial cardiovascular effects are due to not only its sulfur compounds, but also to its vitamin C, vitamin B6, selenium and manganese. Garlic is a very good source of vitamin C, the body's primary antioxidant defender in all aqueous (water-soluble) areas, such as the bloodstream, where it protects LDL cholesterol from oxidation. Since it is the oxidized form of LDL cholesterol that initiates damage to blood vessel walls, reducing levels of oxidizing free radicals in the bloodstream can have a profound effect on preventing cardiovascular disease.

Garlic's vitamin B6 helps prevent heart disease via another mechanism: lowering levels of homocysteine. An intermediate product of an important cellular biochemical process called the methylation cycle, homocysteine can directly damage blood vessel walls.

The selenium in garlic can become an important part of our body's antioxidant system. A cofactor of glutathione peroxidase (one of the body's most important internally produced antioxidant enzymes), selenium also works with vitamin E in a number of vital antioxidant systems.

Garlic is rich not only in selenium, but also in another trace mineral, manganese, which also functions as a cofactor in a number of other important antioxidant defense enzymes, for
example, *superoxide dismutase*. Studies have found that in adults deficient in manganese, the level of HDL (the "good form" of cholesterol) is decreased.

Anti-Inflammatory Benefits Across Body Systems

Our cardiovascular system is not the only body system that may be able to benefit from garlic's anti-inflammatory properties. There's preliminary evidence (mostly from animal studies, and mostly based on garlic extracts rather than whole food garlic) that our musculoskeletal system and respiratory system can also benefit from anti-inflammatory compounds in garlic. Both the diallyl sulfide (DAS) and thiacremonone in garlic have been shown to have anti-arthritic properties. And in the case of allergic airway inflammation, aged garlic extract has been show to improve inflammatory conditions (once again in animal studies).

Even more preliminary is research evidence showing that some inflammatory aspects of obesity may be altered by sulfur-containing compounds in garlic. Specifically, there is one stage in development of the body’s fat cells (adipocytes) that appears to be closely related to status of our inflammatory system. Fat cells cannot become fully themselves unless they are able to progress from a preliminary stage called "preadipocytes" to a final stage called "adipocytes." One of the sulfur compounds in garlic (1,2-vinylidithiin, or 1,2-DT) appears able to lessen this conversion of preadipocytes into adipocytes, and the impact of 1,2-DT appears to be inflammation-related. Even though very preliminary, this research on 1,2-DT is exciting because obesity is increasingly being understood as a disease characterized by chronic, low level inflammation and our inflammatory status is precisely where garlic’s 1,2-DT has its apparent impact.

Antibacterial and Antiviral Benefits

From a medical history standpoint, the antibacterial and antiviral properties of garlic are perhaps its most legendary feature. This allium vegetable and its constituents have been studied not only for their benefits in controlling infection by bacteria and viruses, but also infection from other microbes including yeasts/fungi and worms. (One particular disulfide in garlic, called ajoene, has been successfully used to help prevent infections with the yeast Candida albicans.) Very recent research has shown the ability of crushed fresh garlic to help prevent infection by the bacterium Pseudomonas aeruginosa in burn patients. Also of special interest has been the ability of garlic to help in the treatment of bacterial infections that are difficult to treat due to the presence of bacteria that have become resistant to prescription antibiotics. However, most of the research on garlic as an antibiotic has involved fresh garlic extracts or powdered garlic products rather than fresh garlic in whole food form.

Overgrowth of the bacterium *Helicobacter pylori* in the stomach—a key risk factor for stomach ulcer—has been another key area of interest for researchers wanting to explore garlic's antibacterial benefits. Results in this area, however, have been mixed and inconclusive. While garlic may not be able to alter the course of infection itself, there may still be health benefits from garlic in helping to regulate the body's response to that infection.

Cancer Prevention

While not as strong as the research evidence for cruciferous vegetables, research on the allium vegetables—including garlic—shows that these vegetables have important anti-cancer properties. Interestingly, high intake of garlic (roughly translated as daily intake of this food) has
been found to lower risk of virtually all cancer types except cancer of the prostate and breast cancer. However, moderate intake of garlic (roughly translated as several times per week) has been repeatedly found to lower risk of only two cancer types—colorectal and renal cancer. This difference between "high" versus "moderate" garlic intake may be a real difference that suggests we all need to eat more garlic if we want to maximize its cancer-related benefits. Or it may be a difference that is more related to research complications involving the options given to research participants when reporting their food intake. Still, garlic has a consistent track record with respect to general anti-cancer benefits, and there are good research reasons for classifying garlic as an "anti-cancer" food.

The allyl sulfides found in garlic may play a key role in its cancer-prevention benefits. These garlic compounds are able to activate a molecule called nuclear erythroid factor (Nrf2) in the main compartment of cells. The Nrf2 molecule then moves from the main compartment of the cell into the cell nucleus, where it triggers a wide variety of metabolic activities. Under some circumstances, this set of events can prepare a cell for engagement in a strong survival response, and in particular, the kind of response that is needed under conditions of oxidative stress. Under other circumstances, this same set of events can prepare the cell to engage in programmed cell death (apoptosis). When a cell recognizes that it has become too compromised to continue functioning in a healthy manner with other cells, it stops proceeding through its own life cycle and essentially starts to dismantle itself and recycle its parts. It's critical for a cell to determine whether it should continue on or shut itself down, because cells that continue on without the ability to properly function or communicate effectively with other cells are at risk of becoming cancerous. The ability of garlic's allyl sulfides to activate Nrf2 suggests that garlic may be able to help modify these all-critical cell responses and prevent potentially cancerous cells from forming.

One especially interesting area of research on garlic and cancer prevention involves meat cooked at high temperatures. Heterocyclic amines (HCAs) are cancer-related substances that can form when meat comes into contact with a high-temperature cooking surface (400°F/204°C or higher). One such HCA is called PhIP (which stands for 2-amino-1-methyl-6-phenylimidazopyridine). PhIP is thought to be one reason for the increased incidence of breast cancer among women who eat large quantities of meat because it is rapidly transformed into DNA-damaging compounds.

Diallyl sulfide (DAS), one of the many sulfur-containing compounds in garlic, has been shown to inhibit the transformation of PhIP into carcinogens. DAS blocks this transformation by decreasing the production of the liver enzymes (the Phase I enzymes CYP1A1, CYP1A2 and CYP1B1) that transform PhIP into activated DNA-damaging compounds. Of course, your best way to prevent formation of PhIP is not to bring your meat into contact with a 400°F/204°C cooking surface in the first place. But this area of research still bolsters our view of garlic as an allium vegetable with important cancer-preventive properties.

Garlic and Iron Metabolism

Recent research has shown that garlic may be able to improve our metabolism of iron. When iron is stored up in our cells, one of the key passageways for it to be moved out of the cell and returned into circulation involves a protein called ferroportin. Ferroportin is protein that runs across the cell membrane, and it provides a bridge for iron to cross over and leave the cell. Garlic may be able to increase our body's production of ferroportin, and in this way, help keep iron in circulation as it is needed.
Description

For a small vegetable, garlic (*Allium sativum*) sure has a big, and well deserved, reputation. And although garlic may not always bring good luck, protect against evil, or ward off vampires, characteristics to which it has been assigned folklorically, it is guaranteed to transform any meal into a bold, aromatic, and healthy culinary experience. Garlic is a member of the Lily family and is a cousin to onions, leeks and chives.

Garlic is arranged in a head, called a "bulb," which averages about 2 inches in height and diameter and consists of numerous small separate cloves. Both the cloves and the entire bulb are encased in paper-like sheathes that can be white, off-white, or have a pink/purple hue. Although garlic cloves have a firm texture, they can be easily cut or crushed. The taste of garlic is like no other—it hits the palate with a hot pungency that is shadowed by a very subtle background sweetness. While elephant garlic has larger cloves, it is more closely related to the leek and therefore does not offer the full health benefits of regular garlic.

Fresh, dried and powdered garlic are available in markets throughout the year, however, fresh varieties from California are in season from June through December.

History

Native to central Asia, garlic is one of the oldest cultivated plants in the world and has been grown for over 5000 years. Ancient Egyptians seem to have been the first to cultivate this plant that played an important role in their culture.

Garlic was not only bestowed with sacred qualities and placed in the tomb of Pharaohs, but it was given to the slaves that built the Pyramids to enhance their endurance and strength. This strength-enhancing quality was also honored by the ancient Greeks and Romans, civilizations whose athletes ate garlic before sporting events and whose soldiers consumed it before going off to war.

Garlic was introduced into various regions throughout the globe by migrating cultural tribes and explorers. By the 6th century BC, garlic was known in both China and India, the latter country using it for therapeutic purposes.

Throughout the millennia, garlic has been a beloved plant in many cultures for both its culinary and medicinal properties. Over the last few years, it has gained unprecedented popularity since researchers have been scientifically validating its numerous health benefits.

Currently, China, South Korea, India, Spain and the United States are among the top commercial producers of garlic.

How to Select and Store

For maximum flavor and nutritional benefits, always purchase fresh garlic. Although garlic in flake, powder, or paste form may be more convenient, you will derive less culinary and health benefits from these forms.
Purchase garlic that is plump and has unbroken skin. Gently squeeze the garlic bulb between your fingers to check that it feels firm and is not damp.

Avoid garlic that is soft, shriveled, and moldy or that has begun to sprout. These may be indications of decay that will cause inferior flavor and texture. Size is often not an indication of quality. If your recipe calls for a large amount of garlic, remember that it is always easier to peel and chop a few larger cloves than many smaller ones. Fresh garlic is available in the market throughout the year.

Store fresh garlic in either an uncovered or a loosely covered container in a cool, dark place away from exposure to heat and sunlight. This will help maintain its maximum freshness and help prevent sprouting, which reduces its flavor and causes excess waste. It is not necessary to refrigerate garlic. Some people freeze peeled garlic; however, this process reduces its flavor profile and changes its texture.

Depending upon its age and variety, whole garlic bulbs will keep fresh for about a month if stored properly. Inspect the bulb frequently and remove any cloves that appear to be dried out or moldy. Once you break the head of garlic, it greatly reduces its shelf life to just a few days.

Tips for Preparing and Cooking

Tips for Preparing Garlic

The first step to using garlic is to separate the individual cloves. An easy way to do this is to place the bulb on a cutting board or hard surface and gently, but firmly, apply pressure with the palm of your hand at an angle. This will cause the layers of skin that hold the bulb together to separate.

Peel garlic with a knife or alternatively, separate the skin from the individual cloves by placing a clove with the smooth side down on a cutting board and gently tapping it with the flat side of a wide knife. You can then remove the skin either with your fingers or with a small knife. If there is a green sprout in the clove's center, gently remove it since it is difficult to digest.

Chopping or crushing stimulates the enzymatic process that converts the phytonutrient alliin into allicin, a compound to which many of garlic's health benefits are attributed. In order to allow for maximal allicin production, wait at least 5 minutes before eating or cooking the garlic. Also observe this 5-minute "time out" period before adding any high acidic ingredient to the garlic (for example, lemon juice). Ingredients with a pH below 3.5 can also deactivate the enzymatic process.

Since crushing and chopping are the food preparation steps that activate garlic's enzymes, these steps can help you obtain many of garlic's special benefits. For example, research has shown that microwaving or boiling garlic in uncrushed, whole clove form will deactivate its enzymes, preventing these enzymes from working. For this reason, we recommend that you chop or crush the garlic cloves prior to heating. According to research on garlic preparation methods, it only takes 60 seconds of microwaving whole cloves to lessen some of garlic's health benefits. By contrast, many of garlic's health benefits (including its anti-cancer properties) are preserved if the whole cloves are crushed and allowed to sit for 10 minutes prior to cooking.

The Healthiest Way of Cooking Garlic
We recommend using raw garlic in many of our recipes. If it is a cooked dish you are preparing and you cannot tolerate raw garlic, add chopped garlic towards the end of the cooking time to retain maximum flavor and nutrition. Too much heat for too long will reduce the activity of the health-promoting sulfur compounds that have formed by letting it sit for 5-10 minutes; it will also make garlic bitter. Therefore expose garlic to heat for as little time as possible (5-15 minutes).

If you would like to combine garlic with oil, we recommend that you avoid high-temperature heating of this oil-garlic mixture. Keeping the heat at 250F/121C or lower will help preserve the health benefits of both the garlic and the oil. This same principle applies to the oven roasting of garlic bulbs themselves. We do not recommend the 350F/177C temperature range that you will find in many recipes and on many websites. Once again, a lower temperature is needed to help preserve health-protective compounds in garlic.

How to Enjoy

WHFoods Recipes That Feature Garlic

- Garlic Shrimp Salad
- Mediterranean Dressing

We actually include garlic as an ingredient in so many of our recipes. To find these just go to the Recipe Assistant on the Recipes page and click on "garlic" in the "Food to Include" box.

A Few Quick Serving Ideas

- Purée fresh garlic, canned garbanzo beans, tahini, olive oil and lemon juice to make quick and easy hummus dip.
- Healthy Sauté steamed spinach, garlic, and fresh lemon juice.
- Add garlic to sauces and soups.
- Purée roasted garlic, cooked potatoes and olive oil together to make delicious garlic mashed potatoes. Season to taste.

Individual Concerns

Garlic is not a commonly allergenic food, is not known to contain measurable amounts of oxalates or purines and is also not included in the Environmental Working Group's 2010 report "Shopper's Guide to Pesticides" as one of the 12 foods most frequently containing pesticide residues.

The Johns Hopkins Lupus Center has recently listed garlic as a food to be avoided by persons diagnosed with lupus (systemic lupus erythematosus, or SLE). While we have not seen any published research documenting lupus flare-ups with garlic intake, and while the Lupus Foundation of America has suggested on its website that "occasional use is cooking is not likely to cause significant problems for most people," we have heard directly from website visitors who have experienced problems in this area. If you are a person diagnosed with lupus, we recommend a consult with your healthcare provider to decide about inclusion or avoidance of garlic in your meal plan.
Do not store garlic in oil at room temperature. Garlic-in-oil mixtures stored at room temperature provide perfect conditions for producing botulism, regardless of whether the garlic is fresh or has been roasted.

Nutritional Profile

The sulfur compounds in garlic are perhaps its most unique nutrients. There are literally dozens of well-studied sulfur molecules in garlic, and virtually all of them have been shown to function as antioxidants. In addition, many provide us with anti-inflammatory benefits. The very presence of sulfur in some many different garlic compounds may also play an important role in our nourishment.

Additionally, garlic is an excellent source of manganese and vitamin B6. It is also a very good source of vitamin C and copper. In addition, garlic is a good source of selenium, phosphorus, vitamin B1, and calcium.

For an in-depth nutritional profile click here: Garlic.

In-Depth Nutritional Profile

In addition to the nutrients highlighted in our ratings chart, an in-depth nutritional profile for Garlic is also available. This profile includes information on a full array of nutrients, including carbohydrates, sugar, soluble and insoluble fiber, sodium, vitamins, minerals, fatty acids, amino acids and more.

Introduction to Food Rating System Chart

In order to better help you identify foods that feature a high concentration of nutrients for the calories they contain, we created a Food Rating System. This system allows us to highlight the foods that are especially rich in particular nutrients. The following chart shows the nutrients for which this food is either an excellent, very good, or good source (below the chart you will find a table that explains these qualifications). If a nutrient is not listed in the chart, it does not necessarily mean that the food doesn't contain it. It simply means that the nutrient is not provided in a sufficient amount or concentration to meet our rating criteria. (To view this food's in-depth nutritional profile that includes values for dozens of nutrients - not just the ones rated as excellent, very good, or good - please use the link below the chart.) To read this chart accurately, you'll need to glance up in the top left corner where you will find the name of the food and the serving size we used to calculate the food's nutrient composition. This serving size will tell you how much of the food you need to eat to obtain the amount of nutrients found in the chart. Now, returning to the chart itself, you can look next to the nutrient name in order to find the nutrient amount it offers, the percent Daily Value (DV%) that this amount represents, the nutrient density that we calculated for this food and nutrient, and the rating we established in our rating system. For most of our nutrient ratings, we adopted the government standards for food labeling that are found in the U.S. Food and Drug Administration's "Reference Values for Nutrition Labeling." Read more background information and details of our rating system.
Garlic, raw
6.00 cloves
18.00 grams
Calories: 27
GI: low

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Amount</th>
<th>DRI/DV (%)</th>
<th>Nutrient Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>manganese</td>
<td>0.30 mg</td>
<td>15.0</td>
<td>10.1</td>
</tr>
<tr>
<td>vitamin B6</td>
<td>0.22 mg</td>
<td>12.9</td>
<td>8.7</td>
</tr>
<tr>
<td>vitamin C</td>
<td>5.62 mg</td>
<td>7.5</td>
<td>5.0</td>
</tr>
<tr>
<td>copper</td>
<td>0.05 mg</td>
<td>5.6</td>
<td>3.7</td>
</tr>
<tr>
<td>selenium</td>
<td>2.56 mcg</td>
<td>4.7</td>
<td>3.1</td>
</tr>
<tr>
<td>phosphorus</td>
<td>27.54 mg</td>
<td>3.9</td>
<td>2.6</td>
</tr>
<tr>
<td>vitamin B1</td>
<td>0.04 mg</td>
<td>3.3</td>
<td>2.2</td>
</tr>
<tr>
<td>calcium</td>
<td>32.58 mg</td>
<td>3.3</td>
<td>2.2</td>
</tr>
</tbody>
</table>

World's Healthiest Foods Rating

<table>
<thead>
<tr>
<th>Rating</th>
<th>DRI/DV (%)</th>
<th>Nutrient Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>excellent</td>
<td>75%</td>
<td>Density>7.6</td>
</tr>
<tr>
<td>very good</td>
<td>50%</td>
<td>Density>3.4</td>
</tr>
<tr>
<td>good</td>
<td>25%</td>
<td>Density>1.5</td>
</tr>
</tbody>
</table>

In-Depth Nutritional Profile for Garlic

References

Allium cepa, Onion
Like garlic, onions contain antibiotics and substances that lower blood sugar, serum cholesterol and blood pressure. Onion juice sweetened with sugar or honey is a traditional remedy for colds and coughs. Onions are rich in vitamins B-1, B-2 and Vitamin C.

Allium sativum, Garlic
It has been used for centuries for medicinal purposes and as a culinary herb. In the Talmud Book of Ezra, Jews are encouraged to partake of garlic at the Friday night Shabbat meal for the following five reasons: (1) to keep the body warm; (2) to brighten the face; (3) to kill intestinal parasites; (4) to increase the volume of semen; and (5) to foster love and to do away with jealousy. Garlic is mentioned more than twenty times in the ancient Egyptian medical papyrus called the Codex Ebers dating back to ca. 1550 B.C. Pliny the Elder cited more than sixty therapeutic uses for garlic. Dioscorides, chief physician for the Roman army, prescribed garlic for intestinal parasitic disorders.
Garlic oil was first isolated in 1844. More than one hundred compounds have been identified as constituents of garlic oil. In the Middle Ages, it was eaten daily as a protection against the bubonic plagues that ravished the European continent. Louis Pasteur described its antibacterial properties in 1858. Tons of garlic were used in World War I in field dressings to prevent infection. Alliin and allicin are sulfur-containing compounds that are antibacterial and anti-fungal. When garlic cloves are sliced, diced, or minced, alliin converts allicin into a large number of thioallyl compounds that are effective in lowering blood pressure, blood sugar, serum cholesterol and serum triglycerides. It is effective in boosting the immune system. Garlic is a natural pesticide against mosquito larvae.

Allium schoenoprasum, Chives
In traditional folk medicine Chives were eaten to treat and purge intestinal parasites, enhance the immune system, stimulate digestion, and treat anemia.
Garlic and scallions, along with onions, leeks, chives, and shallots, are rich in flavonols, substances in plants that have been shown to have anti tumor effects. New research from China confirms that eating vegetables from the allium group (allium is Latin for garlic) can reduce the risk of prostate cancer.

Allium tuberosum, Garlic Chives
In Chinese herbal medicine, garlic chives have been used to treat fatigue, control excessive bleeding, and
as an antidote for ingested poisons. The leaves and bulbs are applied to insect bites, cuts, and wounds, while the seeds are used to treat kidney, liver, and digestive system problems.

Other Irritants

Stimulation! If men only knew what stimulation does to their bodies. There is no difference in the ultimate effect, no matter whether the stimulating substance be tobacco, whiskey, salt, pepper, vinegar, mustard, spice and so on. The ultimate effect is to degenerate the integrity of the tissues, cells, glands, organs, blood vessels and to decrease function by depressing the nerves.

Dr. A. D. Birchard described the destructive effect of condiments on the body as follows:

"Thru absorption into the blood, the poisonous oils of condiments are brought into contact with every cell and fiber of the body. The first effect is produced on the delicate walls of blood vessels. A defensive effort causes these to become thickened, a change known as arteriosclerosis (hardening) occurs; the primary thickening is followed by hardening thru a deposit of chalk.

"The eminent Prof. Huchard of Paris, the world’s greatest authority on this subject, showed that mustard and other condiments, when administered to animals, may produce change in the blood-vessels in a few months’ time.

"The same poisonous effects produced upon the blood vessels, are also produced in the kidneys, the delicate cells of which, being brought in contact with the poisons in more or less concentrated form thru their elimination by way of the urine, are made to undergo degenerative changes, thru which their efficiency is impaired, and Bright’s disease is produced.

"Baix fed a half a gram (7.5 grains) of pepper to a rabbit daily. The animal died at the end of 27 days. The liver was found hardened and its cells degenerated. The kidneys were greatly congested.

"Man is the only animal that deliberately commits suicide by (slow) self-poisoning. He is the only animal that spoils his food before he eats it. The average individual suffers constantly from chronic poisoning of some kind, due to the food he eats, either in wrong combination or in excessive amounts, or by adding to it injurious substances for the purpose of stimulating a jaded appetite.
Why I Don’t Eat Toxic Garlic Or Onions

Onion and garlic is actually toxic, believe it or not.

We all know vampires don’t like garlic… but maybe there’s something behind this immortal creatures disdain for garlic that we’re over-looking. Think about it: most of us mortals fear the dreaded “garlic breath” after eating Italian food before getting close and cozy for some face time with a mate. For a good reason too, because most people find onion and garlic breath to be pretty repulsing. So we know that if anything, having garlic and onions before the big date is a major faux pas… but is there more to it?

The answer is, yes.

Before we get into the science, let’s just think common sense. How many people get bad breath after eating apples, pineapple, berries, celery, carrots, orange juice, or even simple bread? You don’t hear any girls running away in terror back to their friends saying “OH NO, BREAD BREATH!” I think it’s a safe bet that most people with good hygiene don’t.

In fact, you even see couples feeding each other strawberries and kissing each other with fruit… but not onions. There’s nothing sexy or sensual about running an onion peel over a women’s breast and lips …unless I suppose you have a alliums fetish (good luck having that up on your online dating profile).
Why is that? Well first let’s tackle what bad breath is first. According to Wikipedia:

Halitosis (bad breath) is a term used to describe noticeably unpleasant odors exhaled in breathing. [...] In most cases (85–90%), bad breath originates in the mouth itself. The intensity of bad breath differs during the day, due to eating certain foods (such as garlic, onions, meat, fish, and cheese), obesity, smoking, and alcohol consumption. Since the mouth is exposed to less oxygen and is inactive during the night, the odor is usually worse upon awakening (“**morning breath**”).

Tongue bacteria produce malodorous compounds and fatty acids, and account for 80 to 90% of all cases of mouth-related bad breath. Tongue bacteria produce malodorous compounds and fatty acids, and account for 80 to 90% of all cases of mouth-related bad breath.

See, even the definition mentions garlic and onions increase bad breath!

Now everyone knows that certain foods just aren’t good for you. Also, I’m sure people know of certain foods that cause people in a 10 ft radius to run away, plugging their nose in fear. So to me, it only seems logical that if you’re eating a food that causes such an unpleasant response to you and those around you, it might not be so good for you.

If somebody doesn’t bathe and they smell like ass, chances are you don’t want to be around them. Why is that? Why do we find THAT smell to be so offensive? It’s simply because evolution says those smells tend to correlate with people that are often:

- unhealthy (not living a clean lifestyle)
- diseased (again, not clean, sickly)
- **toxic** (smells indicate the body trying to **detox**)
- low-status (can’t afford basic hygiene maintenance)
- low-self-esteem (doesn’t bother to keep themselves up)
- unfavorable mating material (doesn’t bother to keep themselves up)

It’s basically nature’s warning system for ourselves and others that we should either change what we’re doing to get healthier, or to stay away from somebody that can possibly pose a threat to our **wellbeing**. It’s nature and human instinct — not superficial politically correct nonsense. It’s logical, and makes total sense.

With all the being said, now that I’m very healthy with a low toxic load, I find people that eat loads or garlic and onions to reek (kind of like leek — oh so clever). Not only their breath, but you can smell it in their sweat. The body is trying to detox it anyway it can, and if it’s that offensive, chances are it’s probably not the best food for you (or them).

So I did some research and found a few really interesting things:
They contain **allicin.** It is anti fungal as well as antibiotic, that is most likely used to prevent the plant from being eaten by fungus, bacterias, and other animals. Farmers can strategically place them in their gardens to prevent animals from getting at other crops. If animals instincts tell them to avoid them… how are we so much smarter?

Reiki practitioners explain that garlic and onions are among the first substances to be expelled from a person’s system – along with tobacco, alcohol and pharmaceutical medications.

Back in the 1980’s, in his research on human brain function, Dr Robert [Bob] C. Beck, DSc. found that garlic has a detrimental effect on the brain. He found that in fact garlic is toxic to humans because its sulphone hydroxyl ions penetrate the blood-brain barrier and are poisonous to brain cells.

Dr Beck explained that as far back as the 1950s it was known that garlic reduced reaction time by two to three times when consumed by pilots taking flight tests. This is because the toxic effects of garlic desynchronize brain waves. “The flight surgeon would come around every month and remind all of us: "Don’t you dare touch any garlic 72 hours before you fly one of our airplanes, because it’ll double or triple your reaction time. You’re three times slower than you would be if you’d not had a few drops of garlic."

In my research that chemical is NOT found in red onions, so that’s considered more “safe”.

The **Taoists** realized thousands of years ago that plants of the **alliaceous** family were detrimental to humans in their healthy state. In his writings, one sage Tsang-Tsze described the Alliums as the “five fragrant or spicy scented vegetables” — that each have a detrimental effect on one of the following five organs — liver, spleen, lungs, kidneys, and heart. Specifically, onions are harmful to the lungs, garlic to the heart, leeks to the spleen, chives to the liver and spring onions to the kidneys.

Tsang-Tsze said that these pungent vegetables contain five different kinds of enzymes which cause “reactions of repulsive breath, extra-foul odour from perspiration and bowel movements, and lead to lewd indulgences, enhance agitations, anxieties and aggressiveness,” especially when eaten raw.

According to **Ayurveda**, India’s classic medical science, foods are grouped into three categories - **sattvic, rajasic and tamasic** - foods in the modes of goodness, passion and ignorance. Onions and garlic, and the other alliaceous plants are classified as rajasic and tamasic, which means that they increase passion and ignorance.

Rajasic and tamasic foods are also not used because they are detrimental to meditation and devotions. “Garlic and onions are both rajasic and tamasic, and are forbidden to yogis because they root the consciousness more firmly in the body”, says well-known authority on Ayurveda, Dr.Robert E.Svoboda.

I’m part Italian, so giving up garlic and onions for me was pretty difficult on a cooked food diet. It wasn't so bad now that I eat mostly **raw**, but you’d be suppressed how many recipes call for garlic and onions. Now
I’m sure a little bit of seasoning here and there isn’t gonna hurt me — but generally speaking, I don’t add any if can avoid it.

When I did my initial garlic and onion detox, I had some incredible results. First off, it helped with my dark circles under my eyes a little bit (though I did detox from regular peanuts as well). Second, and most profoundly, all that garlic and onion was detoxing through my nose! Let me explain. Every time I took a shower and washed my face, I could literally smell the onion garlic scent on my fingers.

My entire body was detoxing the garlic and onion through the sweat on my nose.

I was perplexed …maybe it was just residual smell from my fingers.

It wasn’t. Each day I got into the shower, I would rub my nose and the natural face oils would get on my finger. I would smell my fingers and BOOM! That smell again. I could smell it on my nose from my nose too. Yeah I know this sounds kinda weird and gross, but that’s the whole point of it. **My entire body was detoxing the garlic and onion through the sweat on my nose.** It was so bizarre.

After I think about 2 weeks, it finally went away, and I no longer smelled garlic and onions on my nose. Crazy. Though to me, it meant my body was trying to remove whatever toxins were built up, and it was all finally out of my system. That shit doesn’t happen when you eat apples. You don’t go through 2 weeks of “apple nose” when you stop eating them. Proof enough for me that they weren’t so good.

As of now, knowing that red (purple, super high color on the energy spectrum) onions don’t have that same toxic chemical as the story above about pilots and reaction time, I do at times add it to guacamole or other dishes. Since it’s such a potent thing for me, I only need a tiny amount to add that extra kick. Garlic is hard to avoid, as it’s everywhere, but I minimize my consumption as much as possible.

I have to admit that I have a really extremely healthy, all-natural and organic, low toxic lifestyle (sad that it’s considered extreme), so I’m hyper in-tune and aware of myself and others, thus I probably notice a more drastic change from something as simple as removing 2 foods from my diet than an average person on the SAD. While I do acknowledge there may be some health benefits to these foods, for me, my immune system is so strong and I get plenty of what I need elsewhere, that the cons of eating these foods greatly outweighs the benefits for me, personally. For others at certain times in their life, it may be good — I have no idea.

Who knows, maybe you would see a difference in your body odor, breath, and agility by removing (or at least greatly reducing) these foods as well! Be sure to let me know if you’ve had any experience with this, and what your results were. Remember to think for yourself and do what feels right and makes sense to you, this is my own experience — not a dogma for others, or even myself. In a few years my body could change, who knows….I guess those vampire hunters really were onto something. Be well!
Lucille Rick
6:08pm Mar 25
Thank you Desire Dubounet that is fabulous advice. Such a relief, I love garlic!

Comment History
Desire Dubounet 1:26pm Mar 25
I eat Garlic like crazy, I have a bowl of rich thick garlic soup every week or two, I have written over 300 books made over 500 movies and I have been called the most intelligent person alive by some, being modest I can say without doubt I am one of the most intelligent people alive, and at 63 i can out think most people in tests and outplay most men age 20 in many sports , it is not because i eat so much garlic , but it helps me

Desire Dubounet 1:13pm Mar 25
any food can be a poison it is up to the amount

Desire Dubounet 1:08pm Mar 25
Garlic in moderate amounts is an excellent food and a good medicine, it will not cure brain cancer but it helps in many ways . Italy has the lowest cancer level in Europe and the highest life expectancy, Garlic's medicinal abilities are legendary, but as Ben Franklin said "Moderation in ALL Things" When the French joined a Soviet space mission in late 1986, their menus caused an international stir. The French would not go into space without garlic , and Garlic is mentioned in the Bible as good food , but over use can cause headaches --- at Numbers 11:5: We remember the fish which we ate freely in Egypt, the cucumbers, the melons, the leeks, the onions, and the garlic;
Bob Beck did experiments proving garlic prevented the front and rear brain communicating with each other. But garlic is still touted to be great for some things, I for one am confused, perhaps Desire Dubounet could comment please, and put us out of our dither?