There is always a possibility that there is some radiation particle absorbed and lodged in the digestive tract, such as radioactive Cesium, Uranium or Cobalt. From fallout of experiments in radiation there is a chance. Here we see again that we are constantly being bombarded by radiation.
The Atmospheric detonation of three A-bombs by Harry S Truman with his War Crimes and subsequent atmospheric testing results in this pattern of radiation fallout exposure. And the Cancer death toll rises as we see proof that Harry Truman killed more Americans with the bomb than Japanese.

HOW WERE PEOPLE EXPOSED TO IODINE-131 FROM WEAPONS TESTING?

Most people received most of their dose from contaminated milk.

- Iodine-131 released into air from bomb explosion.
- Iodine-131 was carried by winds and deposited on vegetation, fruits and vegetables.
- Cows and goats grazed on the vegetation contaminated by iodine-131.
- Iodine-131 passed into cow’s and goat’s milk and was consumed by area residents.
- Iodine-131 became concentrated in the thyroid.

People were also exposed by...

- Eating contaminated fruits and vegetables.
- Breathing contaminated air.
Ionising Radiation And Health Effects:

THERE IS NO SAFE DOSE of IONIZING RADIATION

Natural radiation is all around us and comes mostly from the sun. In recent years artificial sources of radiation have increased dramatically. In the workplace and at home new technologies expose us more and more to various kinds of radiation.

Most radiation is unseen and unfelt. But we do sense some radiation. We see by the visible rays from the sun and feel the warmth of its infra-red rays. We are aware of ultraviolet rays by the way they tan our skin.

Our radiation exposures are broadly classed as either ionising or non-ionising according to how they effect body tissues. X-rays and the rays emitted by radioactive materials are ionising.

The electromagnetic radiations (EMR) associated with electricity and electronic equipment used for telecommunications are non-ionising. At least since the 1930s ionising radiation has been known to damage human health, even at extremely low exposures. Knowledge of damage of non-ionising EMR, at low exposures is more recent. Here we deal only with the ionising radiations.

<table>
<thead>
<tr>
<th>Ionising Radiation Exposure</th>
<th>Dose (milliSv/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturally Occurring</td>
<td></td>
</tr>
<tr>
<td>cosmic rays</td>
<td>0.32</td>
</tr>
<tr>
<td>internal (from air, food, and water)</td>
<td>1.30</td>
</tr>
<tr>
<td>external (from soil and rocks)</td>
<td>0.35</td>
</tr>
<tr>
<td>Total</td>
<td>1.97</td>
</tr>
<tr>
<td>Artificially Created</td>
<td></td>
</tr>
<tr>
<td>medical exposure</td>
<td>0.50</td>
</tr>
<tr>
<td>fallout from nuclear testing</td>
<td>0.04</td>
</tr>
<tr>
<td>Total</td>
<td>0.54</td>
</tr>
</tbody>
</table>

As radioactive materials decay they emit **alpha, beta and gamma rays**. Alpha and beta rays behave as streams of particles; gamma rays are electromagnetic like X-rays though more penetrating.

Only ten out of the 92 natural elements have atoms which are radioactive. Uranium and thorium are two of these. Many more radioactive atoms would have been present when the earth was formed but most had decayed long before life evolved on earth. Today we live with a weak background of ionizing radiation from natural sources (see table above).
The Nature Of Ionising Radiation

Ionising radiations are powerful enough to knock electrons out of atoms forming the molecules from which our body tissues are built. X-RAYS CAN AND DO CAUSE CANCER. Cancer incidents went up after the yearly x-ray check. And in countries where they use x-ray checks the incidents of cancer is greater. Yes the x-ray can cause cancer. There is no such thing as a safe dose, but the odds of an x-ray doing this are slim.

When an atom loses an electron the molecule to which it belongs is left with an electrical charge. Electrically charged atoms and molecules are called ions hence ionizing radiation. Ions react chemically with molecules in living cells causing mutations which result in cancer and immune deficiencies.

Alpha particles carry a positive charge and travel no more than 40 millimetres through air. They penetrate the body to just below the dead skin. When released inside our bodies from material we breathe or swallow, alpha rays are able to transfer their energy at short range to damage body cells.

Beta particles carry a negative charge; they travel about one metre through air and penetrate the skin, to reach internal tissue. Beta rays are especially dangerous when emitted inside the body.

Gamma rays behave like X-rays in the body; having no electrical charge and being weightless they penetrate deeply into the body, or pass through it, creating ions as they collide with atoms along their path.

A Legacy Of Radioactive Fallout

The atomic bombings of Hiroshima and Nagasaki in August 1945 brought great human suffering from exposure to high levels of gamma rays. People suffered nausea, vomiting, loss of hair, haemorrhage and destruction of the digestive system leading to loss of body fluids.

Death occurred over weeks in great agony. At lower exposures victims suffered vomiting, loss of appetite, chromosome damage, cataracts and loss of hair.
Children born of mothers pregnant at the time of the bombing suffered a high rate of microencephaly — a reduction in the size of head and brain.

People in the outer areas of the two cities received low radiation exposures. In the years since the bombings the survivors' health has been closely followed. The number of deaths from cancer has been plotted against the radiation dose to individual survivors. The results of this study are used to estimate the risk of cancer from radiation exposures and for setting safety standards.

When leaders of the major powers began testing nuclear weapons they knew the fallout would damage the health of their own, and other, citizens. By the time of the signing of the Comprehensive Test Ban Treaty in 1996 the six major nuclear-weapons nations had tested around 2000 nuclear weapons. Of these 518 have been in the atmosphere, under water or in space.

The Australian government agreed, without consulting the Australian people, to the British government testing at Monte Bello Islands, Emu fields and Maralinga.

Nuclear test sites became mock radioactive battlefields to train 'atomic' soldiers for nuclear war. Some nuclear veterans developed cancer later as a result of their radiation exposures.

In 1963 the Partial Test Ban Treaty banning open-air tests came into force. Since then 1400 tests have been conducted underground around the world.

A study of the health and environmental effects of radioactive fallout by the International Physicians for the Prevention of Nuclear War has found that:

- atmospheric testing will cause 430,000 cancer deaths by year 2000 and eventually over 2 million cancer deaths.
- thousands of people downwind of the test nuclear explosions were dangerously exposed to high levels of radioactivity.
- underground testing creates large quantities of waste in highly fractured underground caverns which could one day contaminate water supplies.

Communities In Danger

In the early hours of the morning on 26 April 1986 a reactor at the Chernobyl nuclear power station, in the Ukraine, exploded. Radioactive material was blasted high into the sky. Fallout descended on Soviet farmlands and cities for hundreds of kilometres. Finer radioactive dust covered vast areas of Europe. The finest dust reached the stratosphere and descended during rain on North America.

Soviet citizen groups are preparing a Black Book compiling the human cost of the disaster.

According to Ukrainian physicist, Vladimir Chernousenko by 1990 the Black Book held 7000 names of people who had died from leukemia and birth defects. Depression of the immune system called 'Chernobyl AIDS' has reduced resistance to disease especially among children.
Ten years after the accident three million people remain exposed to dangerous radiation emanating from the long-lived strontium-90 and cesium-137 in the fallout.

In 1945 nuclear reactors at Hanford, in the United States, produced the first plutonium for nuclear weapons. Today small farming communities close to the plant are paying a high price for their country's nuclear weaponry.

Clouds of strontium-90, cesium-137 and plutonium issuing from the plant's stacks have concentrated in 'hotspots' where radiation levels can be as high as those from the Chernobyl fallout.

Of 28 families along a 'death mile', in 27 of them there has been cancer, thyroid abnormalities, a handicapped child, stillbirth or general bad health.

Far away in Rajasthan, in India, villagers living near a nuclear power station tell a similar story of woe to the Hanford community.

Since 1989 village midwives have seen a doubling of the number of miscarriages and deformed children born with no fingers, joined toes, missing genital organs and abnormal heads.

Visitors witnessed villagers suffering a rare skin disease which causes large blue lumps to grow on their bodies.

The British nuclear reprocessing plant at Sellafield isolates plutonium from radioactive wastes discharged from nuclear reactors. Millions of litres of radioactive effluent pour daily into the Irish Sea. Ocean currents have carried radioactive effluent as far as the Scandinavian coast.

Seascale village lies three kilometres from Sellafield. The village children suffer an excess of leukemia and multiple myeloma six times the national rate.

The villagers saw an obvious link with the plant but the management denied any link. Then in 1990 a research team, headed by Dr Martin Gardner, found that children of male workers at the plant had six times greater chance of developing cancer than other children.

After the release of the report worried workers were told by the plant's health officer: "Don't have a family".

The Pathways

Once released into the environment radionuclides the radioactive atoms of elements find their way into food along innumerable pathways.
In the sea small marine creatures concentrate radionuclides which have been absorbed on to seabed sediments. As predators eat their prey the radionuclides pass, in turn, from shrimps to crabs to fish, many varieties of which are eaten by humans.

Seaweeds and other algae have a remarkable capacity to concentrate radionuclides. Welsh people have been warned not to eat their traditional lava bread made from a local seaweed because it is badly contaminated by ruthenium-106.

On pastures strontium-90 and iodine-131 migrate from soil through the grass eaten by cows to milk. Cesium-137 accumulates in animals from farm fodder. Fungi and mosses concentrate radionuclides. Reindeer meat is the staple diet of Laplanders but since Chernobyl it has been highly contaminated with radionuclides from the fallout.

Radionuclides produced in a nuclear reactor behave chemically in the same way as nutrient elements, which are vital for keeping good health. Their chemical resemblance to the essential nutrients means they are taken up by the body; once in the body they follow the same metabolic pathways to particular organs as the nutrient elements.

Iodine-131 mimics natural iodine and so finds its way into the human thyroid. Here it can irradiate the tissue at close range with beta rays. Strontium-90 mimics calcium and so follows the same pathway into bone where it irradiates bone marrow.
Because it behaves like potassium cesium-137 has an affinity for muscle and other soft tissue where it could cause us to age more quickly. Plutonium mimics iron and finds its way into bone and reproductive organs.

There are radiation exposures from elements that give off alpha or beta waves. These are almost impossible to detect. And yet they are the most devastating. Since these rays will not show on medical detection, an unknowing person could inhale or ingest a small amount of a product and it would devastate the inside slowly with cancer and other degeneration.

Smoke detectors are made with a small amount of a radioactive sample of Americium. This emits alpha particle which even the smoke can block, but if this was ingested the effects would be critical and devastating. An improperly destroyed smoke detector could release this poison and it could find its way into your gut.

Prussian blue the paint color can detox many of these alpha and beta wave radioactive products out of your system out of the system.
Prussian blue is a dark blue pigment – one of the first synthetic pigments – which was synthesized for the first time in Berlin around the year 1703. It was named "Preußisch blau" and "Berlinisch Blau" in 1709 by its first trader. Another name for the color Prussian blue is Berlin blue or, in painting, Parisian blue.

The key colored substance in Prussian blue pigment is an insoluble inorganic compound composed of iron and cyanide ions, with water. It has the idealized formula \(\text{Fe}_7(\text{CN})_{18} \) with 14 to 16 \(\text{H}_2\text{O} \). The pigment may also contain variable amounts of other ions. The color of the pigment depends partly on the size of precipitated particles formed when it precipitates from addition of iron(III) to soluble ferrocyanide. With several other names (see table to right), this dark blue solid is commonly abbreviated "PB." Because it is easily synthesized in impure form, it is the object of instructional experiments. It has a complicated chemistry, however, that has led to extensive speculation on its structure.

Prussian blue is a common pigment, used in paints, and it is the traditional "blue" in blueprints. It has been used as an antidote for certain kinds of heavy metal poisoning.

Prussian blue and its analogs have been extensively studied by inorganic chemists and solid-state physicists because of its unusual properties.

- It undergoes intervalence charge transfer. Although intervalence charge transfer is well-understood today, Prussian blue was the subject of intense study when the phenomenon was discovered.
- It is electrochromic—changing from blue to colorless upon reduction. This change is caused by reduction of the Fe(III) to Fe(II) eliminating the intervalence charge transfer that causes Prussian blue's color.
Despite the presence of the cyanide ion, Prussian blue is not especially toxic because the cyanide groups are tightly bound. Other cyanometalates are similarly stable with low toxicity. Treatment with acids, however, can liberate hydrogen cyanide which is extremely toxic, as discussed in the article on cyanide.

Prussian blue in medicine

Prussian blue's ability to incorporate cations that have one unit of positive charge makes it useful as a sequestering agent for certain heavy-metals ions. Pharmaceutical-grade Prussian blue in particular is used for patients who have ingested thallium or radioactive cesium. According to the International Atomic Energy Agency, an adult male can eat at least 10 grams of Prussian blue per day without any serious harm. The U.S. Food and Drug Administration (FDA) has determined that the "500 mg Prussian blue capsules, when manufactured under the conditions of an approved New Drug Application (NDA), can be found safe and effective therapy" in certain poisoning cases. Radiogardase (Prussian blue insoluble capsules) is a commercial product for the removal of cesium-137 from the bloodstream.

It is better to pretend that the gun is loaded. Here is my formula for a detox you can do safely once a year or so to detox.

1. Take 2 grams of Prussian blue stir into a 4oz. glass of water drink. Use double the dose if you are sure there was exposure. It looks and tastes awful.
2. Then thirty minutes later take 1 tablespoon of activated charcoal powder stir into a 4 oz glass of water drink
3. Then thirty minutes later take 1 tablespoon of bentonite clay stir into a 4 oz glass of water drink
4. Then thirty minutes later take 1 tablespoon of psyllium seed powder stir into a 4 oz glass of water drink
5. Then take some high fiber pills
6. For the next ten days have miso soup once a day and use the New Vistas Algin for homeopathic detox 6 drops twice a day
7. You must keep the bowels working every day. Use enemas, or natural laxatives if you need to.
8. Use probiotic yogurts for the next week.

This will detox out some of the radiation compounds concerns from the digestive tract. As well as it will detox out other poisons. Do this twice a week but just once a year, and yes your stool will be blue.

Here are some other detox programs for you to consider using with the above program. Once we get out the cause, we need to attack the tumors with natural chemotherapy, we need to repair the altered DNA with the other therapies.