Variolinum is a Nosode of Small-pox virus made by taking a Trituration of matter from small-pox vesicle. It is the virus of variola; this for Immunization

Variolinum

Variolinum is the contents of the ripened pustule of smallpox. It is not the contents of a vaccine pustule. It is the virus of variola; not the virus of vaccinia. It is the virus of smallpox; not the virus of cowpox. There has been some confusion on this point. Our pharmacies afford both Variolinum and vaccininum, with the result that the two preparations have been mistaken for each other.

Vaccininum

Vaccininum is a Nosode of Cow-pox virus made by taking a Trituration of matter from Cow-pox vesicle.

Chickenpox, also spelled chicken pox, is the common name for Varicella simplex, classically one of the childhood infectious diseases caught and survived by most children. Chickenpox is caused by the varicella-zoster virus (VZV), also known as human herpes virus 3 (HHV-3), one of the eight herpes viruses known to affect humans.

The importance of this distinction is evident when it is remembered that any immunity conferred by cowpox virus is indirect; conferred by smallpox virus, it is direct.

(a) If an individual may be rendered immune to a given disease by inoculation with the virus of that disease, in the proper preparation and amount; and
(b) If the virus of disease is effective when administered by the mouth, as distinguished from administration hypodermatically or by scarification.

The first form of Variolinum was found in ancient Egypt and China. They took the pustules of diseases or the scab and then made a remedy to build immunity in the patient. If the scab or pustule was too ripe it was bad for it would give the disease. If too old the scab or pustule would be ineffective. Roughly a 2-week old scab or pustule in one patient could provide weak or dead virus to use to build immunity in another. The science of immunization was started.

**Vaccinium myrtillus** is a Homeopathic made from the herb *Huckleberries, Huckleberry, Vaccinum Myrtillus*. This has little to do with Immunity.
Variolation or inoculation was the method first used to immunize an individual against smallpox (Variola) with material taken from a patient or a recently variolated individual in the hope that a mild, but protective infection would result. The procedure was most commonly carried out by inserting/rubbing powdered smallpox scabs or fluid from pustules into superficial scratches made in the skin. The patient would develop pustules identical to those caused by naturally occurring smallpox, usually producing a less-severe disease than naturally-acquired smallpox. Eventually, after about two to four weeks, these symptoms would subside, indicating successful recovery and immunity. The method was first used in China and the Middle East before it was introduced into England and North America in the 1720s in the face of some opposition. The method is no longer used today. It was replaced by smallpox vaccine, a safer alternative. This in turn paved the way for the development of the many vaccines now available.

The terminology used to describe the prevention of smallpox can cause confusion. In 18th-century medical terminology, inoculation refers to smallpox inoculation. Confusion is caused by writers who interchange variolation and vaccination through either mistranslation or misinterpretation. The term variolation refers solely to inoculation with smallpox virus and is not interchangeable with vaccination. The latter term was first used in 1800 soon after Edward Jenner introduced smallpox vaccine derived from cowpox, an animal disease distinct from smallpox. The term variolation was then used from the 19th century to avoid confusion with vaccination. Most modern writers tend to refer to smallpox inoculation as variolation throughout without regard for chronology, as is used here. Further confusion was caused when, in 1891, Louis Pasteur honored Jenner by widening the terms vaccine/vaccination to refer to the artificial induction of immunity against any infectious disease. Inoculation is used synonymously with injection in
Variolinum Or Vaccinimum

connection with the use of vaccines or other biopharmaceuticals, but has other meanings in e.g. laboratory work.

Smallpox vaccine, the first successful vaccine to be developed, was introduced by Edward Jenner in 1798. He followed up his observation that milkmaids who had previously caught cowpox did not later catch smallpox by showing that inoculated cowpox protected against inoculated smallpox. The word vaccine is derived from Variolae vaccinae (i.e. smallpox of the cow), the term devised by Jenner to denote cowpox and used in the long title of his An enquiry into the causes and effects of Variolae vaccinae, known by the name of cow pox. Vaccination, the term which soon replaced cowpox inoculation and vaccine inoculation, was first used in print by Jenner’s friend, Richard Dunning in 1800. Initially, the terms vaccine/vaccination referred only to smallpox, but in 1881 Louis Pasteur proposed that to honor Jenner the terms be widened to cover the new protective inoculations being introduced.


Origins of variolation

China

The Chinese practiced the oldest documented use of variolation, dating back to before the fifteenth century. They implemented a method of “nasal insufflation” administered by blowing powdered smallpox material, usually scabs, up the nostrils. Various insufflation techniques have been recorded throughout the sixteenth and seventeenth centuries within China. According to such documentation, mild smallpox cases were selected as donors in order to prevent serious attack. The
Variolinum Or Vaccininum

The technique used scabs that had been left to dry out for some time. Fresh scabs were more likely to lead to a full-blown infection. Three or four scabs were ground into powder or mixed with a grain of musk and bound in cotton. Infected material was then packed into a pipe and puffed up the patient's nostril. The practice of variolation is believed to have been ritualized by the Chinese. The blowpipe used during the procedure was made of silver. The right nostril was used for boys and the left for girls. Variolated cases were treated as if they were as infectious as those who had acquired the disease naturally. These patients were subsequently kept apart from others until the rash had cleared.

Two reports on the Chinese practice were received by the Royal Society in London in 1700; one by Dr. Martin Lister who received a report by an employee of the East India Company stationed in China and another by Clopton Havers. But no action was taken.

Sudan

Similar methods were seen through the Middle East and Africa. Two similar methods were described in Sudan during the late eighteenth and early nineteenth centuries. Both had been long established and stemmed from Arabic practices. Tishteree el Jidderi ("buying the smallpox") was a practice seen within the women of Sennar in Central Sudan. A mother of an unprotected child would visit the house of a newly infected child and tie a cotton cloth around the ailing child's arm. She would then haggle with the child's mother over the cost of each pustule. When a bargain was struck, the woman would return home and tie the cloth around her own child's arm. Variations of this practice included bringing gifts to the donor. The second method was known as Dak el Jedri ("hitting the smallpox"), a method similar to that used in Turkey and eventually transported into England. Fluid was collected from a smallpox pustule and rubbed into a cut made into the patient's skin. This practice spread more widely through Africa. It may have also traveled with merchants and pilgrims along the middle-eastern caravan routes into Turkey and Greece.

Spread into Western Europe

Introduction

Although variolation had become common practice in China and much of Africa by the seventeenth century, Western European medicine still saw the practice as being nothing more than folklore. It would not be until Italian physician Dr. Emmanuel Timoni of Constantinople promoted the practice that variolation began its spread through Western Europe. After coming across the practice in Constantinople, Timoni wrote a letter describing the method in detail which was later published in the Philosophical Transactions in early 1714. His account would become the first medical account of variolation to appear in Europe. Although the article did not gain widespread notoriety, it caught the attention of two important figures in the variolation movement, Bostonian preacher Cotton Mather and wife of the British Ambassador to the Ottoman Empire, Lady Mary Wortley Montagu.

Lady Mary Wortley Montagu

No stranger to smallpox, Lady Mary had lost her brother to the devastating disease. Soon afterwards she also contracted smallpox. Although she survived she was left with severe facial scarring. While in Turkey she came across the process of variolation as it was practiced amongst the people of Constantinople. She first mentioned variolation in the famous letter to her friend, Sarah Chiswell, in April 1717, in which she enthusiastically recounted the process, which in Constantinople was most commonly administered by experienced elderly women. In 1718, she had the practice conducted on her five-year-old son, Edward Montagu. The procedure was supervised by the embassy doctor Charles Maitland. On her return to England she had her four-year-old daughter inoculated in the presence of physicians of the royal court in 1721. Both variolations proved successful. Later on that year Maitland conducted an experimental inoculation of six prisoners within the Newgate Prison of London. In the experiment, six condemned prisoners were variolated and later exposed to smallpox with the promise of freedom if they survived. The experiment was a success and soon variolation was drawing attention from the royal family who helped promote the
Variolinum Or Vaccininum

procedure throughout England. However, variolation caused the death of Prince Octavius of Great Britain, eighth son and thirteenth child of King George III in 1783.[2]

Portrait of Lady Mary Wortley Montagu

Despite opposition, variolation established itself as a mainstream medical treatment across England. Part of its success was founded on statistical observation which confirmed that variolation was a safer alternative to contracting smallpox naturally, strengthened by the assumption that it protected against the disease for life. The major faults of variolation lay within its simplicity. Doctors sought to monopolize the simple treatment by convincing the public that the procedure could only be done by a trained professional. The procedure was now preceded by a severe bloodletting, in which the patient was bled often to faintness in order to 'purify' the blood and prevent fever. Doctors also began to favor deep incisions, which also discouraged amateurs.[4]¹⁸

The Suttonian Method

Thomas Nettleton (1683-1748) was a precursor of the Suttons around 1722.

The main forerunners of the English variolation movement were the Suttons, a family of physicians who would revolutionize the practice of variolation. The patriarch Robert Sutton was a surgeon from Suffolk who began experimenting with the practice of variolation. In 1757 the procedure failed on one of his sons.[4]²⁰ He sought a new method in which the procedure would become as mild as possible. By 1762 he began advertising "A New Method of Inoculating for Small-Pox." Sutton kept his method a secret and only passed it down to his three sons. The mystique and effectiveness behind this new method helped to promote their business which soon became wildly successful. They established a network of variolation houses and clinics and offered franchises to other variolators for a share of the profits and on the condition that the secret would not be revealed. By 1770, the Suttons had treated over 300,000 satisfied customers.[4]²¹ Daniel, the eldest of the Sutton sons, eventually revealed the family secret in his book The Inoculator published in 1796.[4]²² The success of their method lay in a shallow scratch, careful selection of only mildly-affected donors, and no bleeding or extreme purging. Although the renown of the Suttons gradually faded after this revelation, the family's lasting impression would remain for generations.

Other prominent English variolators included Thomas Dimsdale who published accounts of his method in 1769 and 1781; William Woodville appointed Director of the London Smallpox and Inoculation Hospital in 1791, who published a history of variolation in 1796; and John Haygarth who published an ambitious plan to exterminate smallpox in 1783.

Widespread recognition

In 1738 variolation was added to the second edition of Chambers' Cyclopædia, which in its time was an authority of knowledge for the literary class. Later in 1754, variolation received the sanction of the Royal College of Physicians.[4]⁴⁷ All of this made England the international center of variolation, attracting visitors from all over the world to explore this new method of prevention. The nation also
Variolinum Or Vaccinimum

acted as a magnet for those who sought to introduce the benefits of variolation to their own countries. A remarkable example of this is the introduction of variolation into Russia. Thomas Dimsdale, a prominent banker, politician, and physician, was invited to visit St Petersburg to variolate Catherine the Great. In 1769, he variolated Catherine, her son 14-year-old Grand Duke Paul, and over 140 prominent members of the Court. The results were successful. Dimsdale was created a baron of the Russian Empire, awarded £10,000, with £2000 for expenses and an annuity of £500. His son, who accompanied him was also rewarded. In case Dimsdale’s variolations had ended badly, Catherine had arranged a relay of horses to carry them safely out of the country.

France was the last European country to embrace variolation. It was not until an outbreak of smallpox in Paris in 1752 nearly killed the heir to the French throne that the public embraced the practice after seeing the prince variolated. Similarly in Japan, Chinese merchant Li Jen-Shan proposed the method of traditional Chinese intranasal variolation after a severe smallpox outbreak in Nagasaki in 1744. This led Japanese physician Ogata Shunsaku to variolate children using a human smallpox vaccination method during an outbreak in Chikuzen Province from 1789 to 1790. There were no deaths among the children, and they all appeared to be protected.

By the end of the eighteenth century, variolation had gained widespread global respect and was thought to be one of the greatest medical successes of its time. It had become the subject of serious medical study, leading physicians like John Haygarth from Chester, England, to explore its application on a larger scale. In 1793 he published A Sketch of a Plan to Exterminate the Small-Pox from Great Britain. This relied on rules summarised by Donald Hopkins:

Systematic inoculation throughout the country, isolation of patients, decontamination of potentially contaminated fomites, supervised inspectors responsible for specific districts, rewards for observation of rules for isolation by poor persons, fines for transgression of those rules, inspection of vessels at ports, and prayers every Sunday.

Its implementation at the time was impractical for logistical reasons and the risk that variolation would spread smallpox. However with suitable modifications, such as the substitution of vaccination for variolation, it was remarkably similar to the strategy adopted during the World Health Organization’s smallpox eradication campaign.

Use in Homeopathy

In 1830 Hering proposed the use of Hydrophobinum for the prevention of rabies, Variolinum for prevention of smallpox, and Psorine for the prevention of the itch miasm.
Homeopaths use variolinum successfully, but unknowing ill-trained practitioners made mistakes and many died from ineffective variolinum or too strong variolinum. The FDA was made to regulate vaccination. [http://medicalexposeddownloads.com/PDF/FDA%20history.pdf](http://medicalexposeddownloads.com/PDF/FDA%20history.pdf)
Jenner was a Homeopath
Vaccination is Homeopathy

Jenner knew that
Like Can Treats Like

Dr. Edward Jenner was born in the town of Berkeley, Gloucestershire of England on the 17th of May, 1749. He lived through a tragic childhood, for at the age of five both of his parents passed away. Jenner was raised by his sister, who was to marry the soon-to-be vicar Reverend G. C. Black (Jenner’s father had been the vicar of Berkeley before he passed). While growing up, Jenner expressed a high amount of interest towards rural topics and country matters. He often visited the Severn River to collect shells and anything else that caught his eye. As he grew older, this simple interest blossomed into a thirst for medical and basic scientific study. He was inoculated to smallpox in his preteens, pushing his medical interest even further. After being schooled in Wotton-under-Edge and Cirencester, he became an apprentice to the wise Dr. Daniel Ludlow. Through Ludlow, he gained the initial experience needed to be a surgeon. But later, in 1770, he moved to London, seeking the famous John Hunter, an excellent
surgeon and experimentalist. He quickly developed a strong relationship with Hunter as he and Jenner became very good friends amongst the study of the human anatomy and medical sciences. After three years of training under Hunter, Jenner moved back to Berkeley and became the local practitioner and surgeon, which was very convenient to the townspeople and ill travelers.

As a general practitioner, he faced many illnesses and patients, and his doctoring proved very effective against their ailments. He would always do his best to aid another. Once, he even braved a blizzard to get to a very sick patient and nearly lost his life due to over-exposure. He also made a very productive surgeon and saved many lives. In addition to doctoring, he still had much interest in geology, specifically fossils. Despite his huge medical career, he made a dynamic find in uncovering the remains of a Plesiosaur, a prehistoric dinosaur. His thoughts of geology expanded more and more until his main interests were doctoring and geology. His extra-curricular thoughts were always an inspiration to others, triggering many geological and fossil-related finds and discoveries. Jenner achieved many things, such as his study of the cuckoo bird and his eventual acceptance into the Royal Society, making him a “Fellow” of the Royal Society. But, his greatest achievement is that of the vaccination of smallpox and the later eradication of the disease itself.

Smallpox is a disease triggered by the viral strain variola. It enters the body through the lungs and is carried in the blood to the internal organs, which the virus periodically infects. Later in the sequence, the virus spreads to the skin, which breaks out in a hideous rash. It is characterized by several symptoms: fever, headache, backache, and vomiting (twelve days after exposure). In less serious cases, the rash occurs, starting out small, then the pustules grow larger until they are intensified blisters, then they retreat and leave deep scars in the victims skin. In more severe cases (much more common) the victim usually dies of internal bleeding or more secondary infections. It was a very common disease in different eras, climbing to “epidemic” class over time. It was extremely contagious and deadly, and most cities frantically searched for a cure or prevention. In this frantic search, Jenner began his quest for the cure of smallpox. It started with Jenner giving common inoculations (specifically called variolations for the specific strain of the smallpox virus, hence variola). By drawing blood from his patients and deliberately giving them smallpox under the right body conditions, the patients were quarantined in stables and therefore gave their systems a chance to develop immunity. With the process being very brutal, and sometimes fatal, Jenner strived for a more efficient and safe method. This led him to using cowpox as a solution. He discovered cowpox, a mild viral infection of bovines, which was a simpler strain of variola. This virus merely caused outbreaks on the hands instead of the gruesome rash and such, therefore was safer to use on patients and more effective, giving the body a better chance to overcome this weak virus and build up an immunity to the strain. He called this process vaccination, after the Latin word vacca meaning “from a cow”. Some protested against his method and refused to be vaccinated, mostly because some thought the “white man” were the ones who made the disease the problem in the first place. But, Jenner’s innovative method eventually put an end to the epidemic of smallpox once and for all, even though very mild cases still occur.

Jenner’s work was so fantastic, that hundreds of thousands of people admired him for his discovery, as well as many prominent societies and colleges. Even during the war between Britain and France, the great Napoleon, when Jenner asked him to release some British prisoners of war, replied, “Ah, Jenner, I can refuse him nothing.” Napoleon, being an enemy of Jenner’s country, even minted him a specialized medal commemorating him for his solution to the smallpox issues. In his time, Jenner became a significant leader in the field of science, inspiring many to expand their ideas. I also think it was admirable of him to have extracurricular studies of geology and birds, specifically the cuckoo. His leadership is what I admire him for mostly, but there are many other things. By excelling in productivity and quick thinking, he accomplished the unthinkable by creating a vaccination for smallpox, proving highly beneficial to society. Think of what the world would be like with the smallpox virus untamed. People would
still be isolating or even burning corpses, being extra careful of contact with others, and basically just fearing infection of smallpox every moment of their lives. We owe Jenner so much for his leadership, productivity, and his quick thinking, and I am proud to admire him as my true hero.

Although women were known as healers for centuries, they were not allowed to attend medical school. After many refusals from medical schools, Elizabeth Blackwell (1821-1910), was finally graduated from Geneva Medical College in 1849 and became the first woman to earn an M.D. degree. In 1857, she opened the New York Infirmary to serve poor women and children, and to provide more women opportunities to study medicine and nursing. Across the Atlantic Ocean, another woman faced prejudice, not because of her gender but because of the color of her skin. Mary Seacole, a Jamaican nurse, went to Britain to assist in the Crimean War. When the war office refused her, she established a hotel to feed and care for sick and wounded soldiers. On the battlefield, she was known as “Mother Seacole.”

"Ye shall reap what ye has sown."

by Dan Eden

IMMUNIZATION -- Our Front Line Defense?

In the 18th Century, smallpox was so deadly that almost half of those contracting the disease died. The disease was most lethal in children and the elderly, but some adults seemed to have relatively milder symptoms from the disease.

The breakthrough for effective prevention of smallpox came in 1796 through an Englishman named Edward Jenner. Jenner was a physician who practiced as a country doctor. Smallpox ran rampant during most of the eighteenth century and was a major plague in Europe. It was a highly contagious disease. Its victims had symptoms similar to the flu. However, with smallpox, the victims would develop a rash of odorous, pus-filled blisters all over their body. The blisters would then turn into crusty scabs, would fall off and leave the victim’s body scarred. This disease also lead to blindness, pneumonia, and commonly, death.

One day, Dr. Jenner overheard a girl say that she could not get the dreaded smallpox disease because she had already had another disease known as cowpox. This remark stuck with Dr. Jenner and he subsequently moved to London where he researched and experimented with the cowpox disease for several years. He found out there were actually two forms of cowpox, but only one form could possibly provide a human body with an immunity to smallpox.
On May 14, 1796, a milkmaid named Sarah Nelmes visited Dr. Jenner for the treatment of cowpox. Dr. Jenner decided it was time to test his vaccination, and he tested it on his gardener’s son, an eight-year-old boy named James Phipps. The boy did contract cowpox, but he recovered from it within a few days. Dr. Jenner then waited eight weeks for the boy’s body to build an immunity. To complete his experiment, Dr. Jenner exposed James to smallpox. Amazingly, the boy did not contract the deadly disease, and the doctor claimed success.

The medical community turned its back on Jenner’s claims, and it refused to even listen to him. Finally, he got his big break when a similar experiment in London with cowpox and smallpox proved that Dr. Jenner was right.

Before Jenner's discovery, the standard means of protection against smallpox was inoculation - deliberately infecting a healthy person with matter from someone suffering from a "mild attack" of smallpox. Usually this resulted in the inoculated person also suffering a mild infection, which then gave immunity against future more virulent attacks. But it was a risky procedure. Sometimes the resulting infection was not mild at all, but fatal.

The word "vaccinate" is derived from "vacca" -- the Latin word for cow. The vaccinia virus used today to immunize humans against smallpox is a variant of the common cowpox virus initially used by Jenner. It is presently only given to certain laboratory workers who might become exposed to smallpox in their work. The vaccinia strain is believed to be effective against the generic smallpox disease but there has been growing doubt that it will be effective against the smallpox strains (India 1, for example) developed for weaponized use. Information about this is difficult to obtain since most of this work is classified and secret. If the vaccinia vaccines are effective, which is presently not certain, the next question is who will get the vaccine if it is used by terrorists?

The New York Times has reported that the CDC plans to increase the number of "first responders" who receive the vaccination to 500,000 from the agreed-to 15,000. Preparations are also underway for rapid mass vaccination of the general public. The more extensive vaccination plan is possible because supplies are increasing. The government spent more than $780 million to develop its present vaccination arsenal.

In addition to "medical first responders," it has been suggested that first responders should also include a class to be defined as "economic first responders," those who would be necessary in keeping the economy moving in the event of a nationwide "lock down" caused by an outbreak.

This group would include pilots, truck drivers, food handlers, etc. It is the "etc." that is of concern. Where do you draw the line? Obviously, the line will be drawn after Tommy Thompson’s vision of a "vaccine for every man, woman and child" has been
fulfilled. One of the major problems is the lack of vaccinia immune globulin (VIG), the "antidote" that is needed for those who experience a severe reaction to the vaccine. The Times article reports that there are only 700 doses currently available. Dr. Tom Mack, among others at the CDC warned that, "in the absence of VIG, extensive vaccination would be extremely dangerous."

The vaccinia virus used in the vaccine has been known to cause encephalitis and other neurological problems, including death, in a portion of those given the vaccine. In fact, history shows that immunization has caused many problems in the past.

The worst smallpox disaster occurred in the Philippines after a 10 year compulsory US program administered 25 million vaccinations to its population of 10 million resulting in 170,000 cases and more than 75,000 deaths from "smallpox", in a country having only scattered cases in rural villages prior to the onslaught of vaccines.

Another worry is the fact that infected people may rush to a hospital where they could expose many otherwise sick patients and staff. Since there is no real treatment other than isolation, it has been suggested that traditional medical facilities could become a major source for spreading this disease. This point has not been widely discussed and health officials worry that the public will need to be given special instructions to "stay at home" and "remain indoors."

In the end, the public may have to make the final decision whether to be immunized, re-immunized, or to take their chances with the new world order we have created
As silly as it seems surgeons prior to Pasteur washed their hands during surgery. They only washed their hands after surgery to clean the blood before going home.

In 1846 Ignaz Semmilvise (an Austrian Doctor) found that midwives had less birth related deaths than doctors because they washed their hands.

Germ theory was unknown
Variolinum Or Vaccininum

Dr. Jenner sought to stop smallpox with cowpox variolinum. Isn’t it indeed like treating like?

Jenner was a Homeopath
Vaccination is Homeopathy

Variolinum is made from the contents of the ripened pustule of smallpox. It is the virus of variola; this for immunization.
Variolinum Or Vaccininum

Flies Do NOT Cause the Garbage

2 flies and their off spring will carry away over 100 lbs of dead meat in 48 hrs.

"Let me tell you the secret that has led me to my goal. My strength lies solely in my tenacity."

Louis Pasteur

A bit of science distances one from God, but much science nears one to Him.... The more I study nature, the more I stand amazed at the work of the Creator."
It has been said that Louis Pasteur, the father of modern pathology, stated on his deathbed:
“The microbe is nothing; terrain is everything.”

It is not the germ that can act alone. It needs nutrients, weak defenders and a host of things to be able to proliferate. The germ theory alone is wrong, as our friend Louis Pasteur realized near death. Factors of weakness of immunity like sugar, stress, fried foods, poor nutrition etc all are more important than the bug alone.

When we go behind any restaurant we will find flies on the garbage. It is wrong to use the germ theory mentality to assume the flies made the garbage. The flies take away garbage, and many of our bugs are there to assist detox.

As we rethink medicine and make peace with nature immunity and variolinum makes more sense.
Proper administration of an immunization should use natural methods.
Variolinum Or Vaccinium

Variolinum Spreads into America

Documentation of variolation in the Americas may be traced back to 1706 in Boston, where puritan minister Cotton Mather learned of the technique from his North African slave Onesimus. Further research into the matter revealed to Mather that several other slaves had too been variolated. In 1714, he came across Timoni’s article in Philosophical Transactions in which he described methods of variolation found in Turkey. Mather was able to implement this new method in 1721 when Boston suffered a smallpox outbreak, although others such as William Douglass strongly opposed the idea.

The main arguments against variolation were on religious grounds. Because religion was never far from any aspect of life in eighteenth century Boston, several wondered how this new method would coincide with religious teachings. The simplest debate argued that variolation was ungodly because it was not mentioned specifically in the Bible. Inoculation was also a direct affront to God’s innate right to determine who was to die and how and when death would occur. Several believed smallpox outbreaks were well-merited punishments for the sins of those who contracted the disease. Those who were empirically-minded saw the notion of using the products of such a deadly disease to prevent said disease as being an insult to logic.

Despite these persistent arguments, Mather also gained several supporters. Among this group of followers was surgeon Zabdiel Boylston who urged Mather to further promote the procedure. With the support of Mather, Boylston went on to successfully variolate 300 patients with only six of them dying. By contrast, 1,000 of the 6,000 people who acquired smallpox naturally died during the same period. Boylston traveled to London in 1724. There he published his results and was elected to the Royal Society in 1726.
Variolinum Or Vaccinimum

From Boston, the practice spread throughout the colonies. In 1775, George Washington ordered that the Continental Army be variolated. By the end of the American Revolutionary War, variolation had gained widespread acceptance in the larger cities and towns of the United States.[47]

Transition into vaccination

The success of variolation led many, including medical professionals, to overlook its drawbacks. Variolation was practiced on the assumption that it protected against smallpox for life and was unlikely to kill. Both these assumptions eventually proved to be false. In some cases, even natural smallpox failed to protect one from a second attack. These cases were a result of a lapse of immune "memory", while others may have been misdiagnosed (experts often confused smallpox with chickenpox). Variolation also required a level of skill and attention to detail which some physicians lacked. Many physicians failed to take note of local redness and discharge to assure the variolation had taken, resulting in inadequate treatment. However, it was its great risk to others that led to the end of the practice. The collateral smallpox cases spread by variolated subjects began to outweigh the benefits of the procedure.

From the 1760s, a number of individuals, including John Fewster, Peter Plett, Benjamin Jesty, and particularly Edward Jenner, were interested in the use of material from cowpox, an animal infection, to protect against smallpox.[10][11] In 1796, Jenner vaccinated James Phipps, did more vaccinations in 1798, and was the first to publish evidence that cowpox protected against smallpox, was safer than variolation, and that his vaccine could be maintained by arm-to-arm transfer.[12] The use of variolation soon began to decline as the smallpox vaccine became widely used and its benefits appreciated. Various countries made variolation illegal, starting with Russia in 1805. Variolation served as a natural precursor to the discovery of vaccination. The major differences between the two were that in vaccination, material from cowpox, an animal disease, was used, but particularly that it was safe to those vaccinated and was not transmitted to their contacts. Vaccination offered the public a less-harmful method of preventing smallpox. Vaccination would revolutionize the control of smallpox, leading to its eventual eradication. The extension of the principle of vaccination by Pasteur and his successors would lead to the development of vaccines for diseases such as diphtheria, measles, mumps, rubella, and influenza, and make the eradication of infectious diseases, particularly poliomyelitis, a realistic prospect.

The end of variolation

The FDA was started to help regulate vaccination. [http://medicalexposeddownloads.com/PDF/FDA%20history.pdf](http://medicalexposeddownloads.com/PDF/FDA%20history.pdf)

Although variolation eventually declined or was banned in some countries, it was still practiced in others. “Buying the smallpox” was still practiced in Sudan until the late nineteenth century.[19] However, variolation survived longer elsewhere. During the World Health Organization’s Smallpox Eradication Campaign vaccination teams came across variolators in remote areas of Pakistan and Afghanistan and their samples were confiscated. In the early stages of the campaign live virus was detected in some but as the campaign progressed variolators could not replenish their stocks and although virus particles were detected in some samples very few contained live virus.[83-5] Passage of time and information about the survival of smallpox virus make it extremely unlikely that any infectious samples have survived.[123-7]

Although variolation has ceased, it has influenced the concept of other traditional practices, such as “Pox Parties” in which children are intentionally exposed to diseases like chickenpox and measles and rubella in order to gain solid natural immunity. Although strongly discouraged by public health officials, the practice persists.[13]
Variolinum Or Vaccinimum

References


http://www.downloads.imune.net/medicalbooks/Homeopathic%20Immunization.pdf  Vaccinations

http://indavideo.hu/video/Jimmy_Kimmel_and_Desire_Dubounet_on_Vaccination

http://www.downloads.imune.net/medicalbooks/SINthetic%20pesticides%20cause%20Autism,%20not%20Vaccines.pdf

Variolinum Or Vaccinimum

Immunization was used in India 1000 BC
In China it was used from 1350 AD

In 1796 Jenner makes Vaccination very popular to the people,
Louis Pasteur makes many vaccines
The need for Vaccine regulation is behind the development of the FDA

First Synthetic chemicals made in 1869.
Use of SInthetically Derived Pesticides starts in 1900. Use Expands in 1909.
The first legislation providing federal authority for regulating pesticides was enacted in 1910.

Autism is first observed in 1900s and it is labeled Autism in 1911, near to the first use of the SInthetic Insecticides, just one year after the first use of the manmade chemicals.

At First Autism effects 1 in 10 million

Autism grows in perfect correlation to the use of SInthetic Chemicals World-Wide. The Causative relation of SInthetics causing Autism is absolutely confirmed

Today Autism effects 1 in 47

(OVER 100 years of vaccination without Autism)

(almost 3000 years of vaccination without Autism)